
iContractBot: A Chatbot for Smart Contracts’

Specification and Code Generation

Ilham Qasse1, Shailesh Mishra2, Mohammad Hamdaqa1 3

1Department of Computer Science, Reykjavik University, Reykjavik, Iceland
2Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
3Department of Computer and Software Engineering, Polytechnique Montreal, Montreal, Canada

1{ilham20,mhamdaqa}@ru.is, 2mshailesh0511@iitkgp.ac.in, 3mhamdaqa@polymtl.ca

Abstract—Recently, Blockchain technology adoption has ex-
panded to many application areas due to the evolution of smart
contracts. However, developing smart contracts is non-trivial and
challenging due to the lack of tools and expertise in this field.
A promising solution to overcome this issue is to use Model-
Driven Engineering (MDE), however, using models still involves a
learning curve and might not be suitable for non-technical users.
To tackle this challenge, chatbot or conversational interfaces can
be used to assess the non-technical users to specify a smart
contract in gradual and interactive manner.

In this paper, we propose iContractBot, a chatbot for model-
ing and developing smart contracts. Moreover, we investigate
how to integrate iContractBot with iContractML, a domain-
specific modeling language for developing smart contracts, and
instantiate intention models from the chatbot. The iContractBot
framework provides a domain-specific language (DSL) based on
the user intention and performs model-to-text transformation to
generate the smart contract code. A smart contract use case
is presented to demonstrate how iContractBot can be utilized
for creating models and generating the deployment artifacts for
smart contracts based on a simple conversation.

Index Terms—Chatbot, Smart Contracts, Blockchain, Model-
Driven Engineering, Domain Specific Language, Ethereum, Hy-
perledger Composer

I. INTRODUCTION

Smart contracts are self-executed program codes that are

hosted on a blockchain platform, to enforce agreements when

conditions are met [5]. Smart contracts are considered a great

advancement for blockchain technology, as it enabled the

technology to be adopted in many fields such as finance,

identity management, Internet of Things, etc [13]. However,

developing smart contract code is challenging especially for

non-technical users [4], [13], as it requires one to understand

(i) the language used to code the smart contract, (ii) the infras-

tructure constraints and limitations, and (iii) the relationships

between the deployed artifacts and the resources.

Model-Driven Engineering (MDE) is one of the popu-

lar approaches used to address smart contract development

challenges [3], [9], [11]. MDE is a software development

methodology where models are used as first class entities for

software development. Models are constructed representing

distinct perspectives on a software system. They may be

refined, developed into a new version, and can be applied to

create executable code. The main goal is to elevate the extent

of abstraction and to broaden and evolve complex software

program structures utilizing models only.

In previous work [3], we proposed iContractML, a graphical

modeling framework to develop and generate smart contracts

code. While graphical interaction mechanisms are famous and

widely accepted, some users may lack the technical abilities

required to use them [6]. Moreover, using MDE requires

a steep learning curve and might be challenging for non-

technical users who are not familiar with modeling tools or

DSLs [1], [10]. Chatbot is a promising solution to tackle this

issue, where it can be utilized to facilitate non-technical users

to use MDE and to enhance usability and user experience [7],

[12].

In this paper, we explore the use of chatbots to develop and

model smart contracts instead of the graphical interface used

in iContractML [3]. The main contribution of this paper is :

• Integrate the chatbot application with the model-driven

based framework iContractML.

• iContractBot: a goal-oriented chatbot application to allow

users (technical or non-technical) to develop their smart

contract in a gradual and interactive manner.

The rest of this paper is organized as follows: Section II de-

scribes the system design of iContractBot. The implementation

of iContractBot is presented in Section III. Finally, Section IV

concludes the paper.

II. ICONTRACTBOT SYSTEM DESIGN

The main goal of this paper is to create a conversational

agent for model specification, where we have the conversation

with the smart contract developer as an input and model

specification as output. We aim to provide a link between

the natural language conversation and modelling specifica-

tions, which includes capturing and extracting modeller intent,

mapping the intention to modeling actions, and validating the

model.

A. Modeller Intention Detection

Any goal-oriented conversational framework requires an

intent recognition component to understand the user’s goal

or objective. The bot must classify the end-user’s utterance

into one of the predefined intents. There are many chatbot

frameworks available to build conversational bots and to detect

intents, such as Google Dialogflow 1, IBM Watson Assistant

1https://dialogflow.cloud.google.com



End-user

Send request User Input

Smart Contract 

code

Smart Contract 

code

Create DSL for 
user-intent

Xatkit Chatbot 

Intent Package

Execution Package

Platform Package

uses

uses

Xatkit Modeling Language

Capture Intent

Modeling Service

Intention
DSL

xtend

Smart Contract 
code

Generate 

Code

Validation

iContractML
Model

Validate DSL

Fig. 1. iContractBot system architecture

2, etc. Xatkit [2] is an open-source framework that supports

integration with the previously mentioned platforms to capture

user intent and understand advanced natural language. More-

over, this framework empowers building platform-independent

chatbots [2]. Hence, in this paper, we have adopted the Xatkit

bot framework to build the conversational bot, and to detect the

user input. The user intent is detected based on a predefined

set of expressions.

B. Modeller Intention to Modelling Specification Mapping

To link natural language conversation and modeling spec-

ifications, we need to map the detected user intent to the

model specification (iContractML). In order to provide this

link, there is a need to identify the principal entities of the

model specification and represent it as a key structure for

mapping it to the captured user intent. A DSL model is created

based on the mapping of the user intent and the structure of

the model specification.

C. Model Validation

In MDE, data validation is important because it guarantees

that the system runs on valid and meaningful data [8]. The

entire model-based development process can be faulty due to

a single inaccurate input data. In this paper, we are performing

input sanitation at the chatbot level and output validation for

the created DSL, before any model transformation. This facil-

itates the data validation process as a chatbot is an open input

2https://www.ibm.com/cloud/watson-assistant

environment that is more flexible to validate, unlike MDE

environments. We validate the detected user intention from any

contextual errors or missing data based on the defined structure

of the DSL model. This validation is done based on pre-

defined rules that will enable the chatbot to handle incomplete

or inconsistent elements (e.g., missing relationships) defined

by the user.

III. ICONTRACTBOT IMPLEMENTATION

In our previous work [3], we have created a unified ref-

erence model for smart contracts. Moreover, we proposed

iContractML which is a graphical framework to develop smart

contracts onto multiple blockchain platforms. iContractBot

integrates with the reference model of iContractML to generate

smart contracts code through the chatbot framework instead of

the graphical interface. iContractBot integrates different tools,

including Xatkit bot framework [2], Xtext 3, and Xtend 4. Fig-

ure 1 demonstrates the main components of the iContractBot,

which are :

• Xatkit chatbot: a chatbot framework we used to imple-

ment the conversational bot and to capture the user intent.

The user intent is the smart contract description provided

by the end-user.

• Validation entity: validates the captured user intent

against a set of predefined validation rules, and notifies

the end-user if any extra details are required.

3https://www.eclipse.org/Xtext/
4https://www.eclipse.org/xtend/



• Modeling Service: consists of an iContractML model and

a generated DSL file based on the user intent.

• Xtend: used to generate the smart contract code based on

the selected blockchain platform.

A. Preliminaries and Running Example

Using iContractBot, we have created models and generated

the deployment artifacts for a vehicle auction use case. In this

use case, a smart contract is used to auction vehicles, where

the vehicle is the key asset. There are two participants in this

example: owner and bidder. The smart contract is created by

the owner to auction his/her vehicle. The bidder can place bids

on the vehicles that they are interested in.

B. Chatbot Framework

Xatkit is an open-source framework to easily build platform-

independent chatbots. We have used this framework to develop

a web-based conversational bot and to capture the user intent.

The user intent represents the smart contract use case that the

end-user is interested to generate. The chat flow in the bot is

directed based on the main components of the reference model

of the smart contract [3]. Once the end-user finalizes the smart

contract use case, iContractBot will validate the captured user

intent. If there are any missing required details or errors in the

user request, the bot will notify the end-user. A sample of the

conversation to build the vehicle auction use case is illustrated

in Figure 2.

C. Modeling Service

The modeling service represents the linking of the user

intention to the modeling specification of iContractML. We

first identified the key classes of iContractML meta-model and

create a DSL model (illustrated in Figure 3) that acts as a

structure for mapping and validating. The created DSL model

is as follows:

• Contract: where the user specifies a name for the contract

and a platform. We support three blockchain platforms,

which are Azure, Hyperledger Fabric, and Ethereum.

• Participant: the user can specify multiple participants,

where each participant has a name (or identifier), and

a list of parameters that describe the participant.

• Asset: a tangible or intangible value that the user can

specify. Any object of value in the real world may be

represented as an asset.

• Transaction: a user will specify a transaction, which is a

function that can modify the values of the attributes of a

participant or an asset.

• Relationship: a user will define if the transaction has a

relationship with a participant (TranRel) or with an asset

(AssetRel).

• Condition: the end-user will specify if there any access

condition on a defined transaction.

After the chatbot framework detects the modeler intent, we

map it to the structure of the model specification and create

an instance of the DSL model.

Fig. 2. Vehicle Auction Use Case Example

TABLE I
MAPPING THE INTENTION DSL CLASSES WITH VEHICLE AUCTION

USE-CASE

DSL Intention Class Vehicle Auction Use-Case

Contract
name: Vehicle Auction

platform: Ethereum

Asset name: Vehicle

Participants

Participant 1:

name: Owner

creator : True

Participant 2:

name: Bidder

creator : False

Transactions

Transaction 1:

name: Place-bid

Transaction 2:

name: Withdraw

Relationship

TranRel for Place-bid transaction:

participant : Bidder

TranRel for Withdraw transaction:

participant : Owner



Contract

+ name: string

+ platform: string

Participant

+ name: string

+ creator: bool

Asset

+ name: string

Transaction

+ name: string

Condition

+ name: string

+ condition: string
Parameters

+ name: string

+ type: string

Relationship

+ name: string

TranRel

+ participant: string

AssetRel

+ asset: string

[0...*] condition[0...*] parameters[0...*] parameters [0...*] relationships

[0...*] participants

[1...*] assets

[0...*] transactions

Fig. 3. Intention DSL

Table I demonstrates the mapping between the vehicle

auction use case and the main classes of the intention DSL.

The DSL model instance is validated against the iCon-

tractML model. From the validated model we apply a model to

text transformation using Xtend to generate the smart contract

code. The transformation template used in Xtend is described

in [3].

IV. CONCLUSION

In this paper, we have investigated how chatbot is utilized to

facilitate the usage of MDE in code development. We have in-

troduced iContractBot, a chatbot framework for smart contract

development, and we have integrated it with iContractML, a

DSML for developing smart contracts. This is achieved by

building a DSL for the captured user intent and then generating

an instance of the iContractML model based on the DSL by

applying Model-to-Model transformation. A vehicle auction

smart contract was developed using iContractBot as a case

study to demonstrate the framework.

For future direction, we are planning to conduct an empirical

study from multiple perspectives (user, contract language, etc.)

that compares the two modalities, that is the graphical and the

conversational interface.

DATA AVAILABILITY

The iContractBot project scripts are openly available at

iContractBot repository 5.

REFERENCES

[1] Antonio Bucchiarone, Jordi Cabot, Richard F Paige, and Alfonso Pieran-
tonio. Grand challenges in model-driven engineering: an analysis of the
state of the research. Software and Systems Modeling, 19(1):5–13, 2020.

5https://zenodo.org/record/4595966

[2] Gwendal Daniel, Jordi Cabot, Laurent Deruelle, and Mustapha Derras.
Xatkit: a multimodal low-code chatbot development framework. IEEE

Access, 8:15332–15346, 2020.

[3] Mohammad Hamdaqa, Lucas Alberto Pineda Metz, and Ilham Qasse.
icontractml: A domain-specific language for modeling and deploying
smart contracts onto multiple blockchain platforms. In Proceedings of

the 12th System Analysis and Modelling Conference, pages 34–43, 2020.

[4] Tharaka Hewa, Mika Ylianttila, and Madhusanka Liyanage. Survey
on blockchain based smart contracts: applications, opportunities and
challenges. Journal of Network and Computer Applications, page
102857, 2020.

[5] Merit Kolvart, Margus Poola, and Addi Rull. Smart contracts. In The

Future of Law and etechnologies, pages 133–147. Springer, 2016.

[6] Sara Pérez-Soler, Mario González-Jiménez, Esther Guerra, and Juan
de Lara. Towards conversational syntax for domain-specific languages
using chatbots. J. Object Technol., 18(2):5–1, 2019.

[7] Sara Pérez-Soler, Esther Guerra, and Juan de Lara. Flexible modelling
using conversational agents. In 2019 ACM/IEEE 22nd International

Conference on Model Driven Engineering Languages and Systems

Companion (MODELS-C), pages 478–482. IEEE, 2019.

[8] Alessandro Rossini, Adrian Rutle, Khalid A Mughal, Yngve Lamo, and
Uwe Wolter. A formal approach to data validation constraints in mde.
Proceedings of TTSS, pages 65–76, 2011.

[9] Henry Syahputra and Hans Weigand. The development of smart
contracts for heterogeneous blockchains. In Enterprise Interoperability

VIII, pages 229–238. Springer, 2019.

[10] Juha-Pekka Tolvanen and Steven Kelly. Model-driven development
challenges and solutions: Experiences with domain-specific modelling
in industry. In 2016 4th International Conference on Model-Driven

Engineering and Software Development (MODELSWARD), pages 711–
719. IEEE, 2016.

[11] An Binh Tran, Qinghua Lu, and Ingo Weber. Lorikeet: A model-driven
engineering tool for blockchain-based business process execution and
asset management. In BPM (Dissertation/Demos/Industry), pages 56–
60, 2018.

[12] Stefano Valtolina, Barbara Rita Barricelli, and Serena Di Gaetano.
Communicability of traditional interfaces vs chatbots in healthcare and
smart home domains. Behaviour & Information Technology, 39(1):108–
132, 2020.

[13] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen,
Jian Weng, and Muhammad Imran. An overview on smart contracts:
Challenges, advances and platforms. Future Generation Computer

Systems, 105:475–491, 2020.


