
Ad Hoc Networks 133 (2022) 102882

A
1

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

Vericom: A Verification and Communication architecture for IoT-based
blockchain
Ali Dorri a,∗, Shailesh Mishra b, Raja Jurdak a

a Trusted Networks Lab, School of Computer Science, QUT, Australia
b Department of Electrical Engineering, IIT Kharagpur, India

A R T I C L E I N F O

Keywords:
Blockchain
Traffic management
Scalability

A B S T R A C T

Blockchain has received tremendous attention as a secure, distributed, and anonymous framework for the
Internet of Things (IoT). As a distributed system, blockchain trades off scalability for distribution, which
limits the technology’s adaptation for large scale networks such as IoT. All transactions and blocks must be
broadcast and verified by all participants which limits scalability and incurs computational and communication
overheads. The existing solutions to scale blockchains have so far led to partial recentralization, limiting the
technology’s original appeal. In this paper, we introduce a distributed yet scalable Verification and Commu-
nication architecture for blockchain referred to as Vericom. Vericom concurrently achieves high scalability
and distribution using hash function outputs to shift blockchains from broadcast to multicast communication.
Unlike conventional blockchains where all nodes must verify new transactions/blocks, Vericom uses the hash of
IoT traffic to randomly select a set of nodes to verify transactions/blocks which in turn reduces the processing
overhead. Vericom incorporates two layers: (i) transmission layer where a randomized multicasting method
is introduced along with a backbone network to route traffic, i.e., transactions and blocks, from the source
to the destination, and (ii) verification layer where a set of randomly selected nodes are allocated to verify
each transaction or block. The performance evaluation shows that Vericom reduces the packet and processing
overhead as compared with conventional blockchains. In the worst case, packet overhead in Vericom scales
linearly with the number of nodes while the processing overhead remains scale-independent.
1. Introduction

The Internet of Things (IoT) is a network of millions of low-resource
devices that collect and exchange information about the physical envi-
ronments which is then processed by service providers (SPs) to offer
personalized services to the users. Conventional IoT ecosystems rely
on a brokered communication model where the communications, au-
thentication, and authorizations are conducted by a central trusted
authority. In many situations, geographically proximate IoT devices
still have to go through a remote central server to access services which
is unlikely to scale when millions of nodes are connected. SPs collect
a huge volume of personalized information about the users and thus
can build a virtual profile about them which risks user privacy. The
conventional security architectures are not directly applicable in IoT
as IoT encompasses heterogeneous low-resource devices which come
with no or limited built-in security features [1,2]. Most of the existing
IoT-specific security solutions largely rely on centralized communica-
tion models which suffer from lack of scalability and single point of
failure [3–5].

∗ Corresponding author.
E-mail address: Ali.dorri@qut.edu.au (A. Dorri).

1.1. Motivation

In recent years, blockchain has received tremendous attention to ad-
dress the outlined challenges in IoT due to its salient features including
decentralization, anonymity, trust, and security [6–9]. Blockchain is an
immutable database shared across all participating nodes in the net-
work and was first introduced in Bitcoin [10], the first cryptocurrency,
in 2008. A transaction represents the basic communication primitive
between the participating nodes which is sealed using asymmetric
encryption. Blockchain participants are known by a unique Public
Key (PK) that can be changed for each transaction which in turn
introduces a level of anonymity. All transactions are broadcast in
the network and verified by all participants. Transaction verification
typically involves matching the PK with the associated signature (both
are stored in the transaction). Some nodes, known as validators, may
choose to store new transactions in blockchain in the form of a block
which requires following a consensus algorithm. The latter protects
blockchain security against malicious validators that may attempt to
vailable online 6 May 2022
570-8705/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.adhoc.2022.102882
Received 3 June 2021; Received in revised form 23 April 2022; Accepted 26 April
 2022

http://www.elsevier.com/locate/adhoc
http://www.elsevier.com/locate/adhoc
mailto:Ali.dorri@qut.edu.au
https://doi.org/10.1016/j.adhoc.2022.102882
https://doi.org/10.1016/j.adhoc.2022.102882


Ad Hoc Networks 133 (2022) 102882A. Dorri et al.
Fig. 1. The traditional correlation between distribution and scale for IoT-based
blockchain.

flood the network with fake blocks and ensures the validator of the next
block is selected randomly. This introduces a trusted network where
untrusted participants can exchange information.

Despite their significant advantages, conventional blockchains are
not directly applicable in IoT due to the lack of scalability resulting
from huge communication and computational overheads. New transac-
tions and blocks are broadcast to all IoT nodes, i.e., IoT devices and
users, to ensure distributed management of the blockchain. This in
turn demands significant bandwidth which is far beyond the limited
energy, processing, and communication capabilities of the IoT nodes.
IoT nodes have limited energy resources. Packet transmission is among
the most energy consuming tasks in IoT nodes which makes it impos-
sible for them to participate in the management of the blockchain,
where the participants are expected to receive a huge volume of trans-
actions/blocks. New transactions/blocks must be verified by all nodes
which in turn requires significant computational resources that is far
beyond the capabilities of IoT nodes.

There is a known trade-off between scalability and distribution as
shown in Fig. 1. Purely distributed chains, such as Bitcoin [10], suffer
from lack of scalability due to their reliance on broadcast communica-
tion and computationally demanding block and transaction verification
processes where all transactions and blocks needs to be verified by
all the participating nodes. Existing proposals to enhance blockchain
scalability include hierarchical, sharded, or clustered blockchains (see
Fig. 2) [11–13]. In hierarchical methods [13,14], multiple levels of
hierarchy are created where the transactions and blocks in each hierar-
chy are only broadcast to the nodes at the same level in the hierarchy
(see Fig. 2a). In sharding [15], the network is divided into multiple
groups, i.e., shards, where the transactions of each shard are only
broadcast to the nodes in the same shard (see Fig. 2b). In clustering
algorithms, the network is grouped into multiple clusters where a high
resource available node, known as cluster head (CH), forwards blocks
and transactions to/from the cluster members (see Fig. 2c). Unlike
sharding where each shard functions independently, in clustering the
transactions and blocks are broadcast and the CHs jointly manage
the blockchain. In addition to the conventional blockchains, IoTA, a
distributed ledger technology, has been introduced to eliminate central-
ization in IoT. However, IoTA still relies on broadcast communications
and suffers from centralization of a coordinator node that verifies
transactions.

As shown in Fig. 1 the existing methods sacrifice distribution for
scale by deviating from blockchain’s original distributed topology. The
security and anonymity of the blockchains are directly impacted by
the distribution and scaling features. A distributed large scale network
achieves higher security as compared with more centralized smaller
scale chains as a larger number of potential validators exist in the
2

network, making it harder for attackers to dominate the blockchain
network and store fake blocks. Additionally, blocks are verified by
a broader set of nodes which protects against colluding nodes that
may mark a fake block as valid. From the anonymity perspective,
the large number of participants continuously increases the number of
transactions and PKs in the blockchain which in turn complicates user
deanonymization [16] by linking a group of transactions or PKs to a
particular IoT node. Evident from the above discussions, it is critical
to reduce the blockchain communication and computational overheads
without sacrificing the distributed feature.

1.2. Contributions

The main contribution of this paper is to push the boundaries of
distribution and scale (see Fig. 1) to achieve a distributed yet scalable
blockchain which is adoptable in IoT ecosystem by introducing a ver-
ification and communication architecture known as Vericom. Vericom
incorporates two layers namely:

(i) Transmission layer: In this layer, we introduce a multicasting
algorithm that sends traffic, i.e., transactions and blocks, to a group
of IoT nodes that are selected randomly, dynamically, and in an un-
predictable manner based on the hash of the traffic. This shift from
broadcast (as in conventional blockchains) to multicast significantly
reduces the bandwidth consumption of the underlying IoT nodes while
the randomness, uniqueness, and dynamic allocation of the destination
group avoids centralization. Vericom incorporates a backbone network
that receives traffic from the source IoT node and employs IP-based
routing algorithms to route the traffic toward the destination IoT nodes
that are randomly selected based on the hash of the transaction/block
(details in verification layer). The backbone network is similar to the
Internet backbone network that routes the Internet traffic even in the
existing blockchain architectures. To incentivize nodes to function as
backbone nodes, Vericom introduces a traffic management fee (TMF)
that is paid by the validators to the backbone nodes. The value of TMF
is defined based on the number of blocks generated by a validator
during an epoch time.

(ii) Verification layer: In this layer a subset of the participating
nodes, known as verifier set, are randomly and dynamically dedicated
to verify a particular transaction or block which in turn reduces the
computational overhead associated with transaction/block verification
on the IoT devices as compared with conventional blockchains where
all transactions and blocks are broadcast. The main aim of this layer is
to limit the verifiers of the traffic while preserving the security of the
ledger against malicious nodes that may mark an invalid block or trans-
action as valid to store fake data in the blockchain. The selection of the
verifier set is based on the hash of the transaction/block content that
ensures randomness and unpredictability of the verifier set. This also
ensures the distributed nature of Vericom as for each transaction/block
a unique verifier set is randomly and dynamically identified. Once a
block is verified by the verifier set, it is broadcast to the network and
any other node may also attempt to verify the same to protect against
rare cases where all the nodes in the verifier set are colluding malicious
nodes.

We study the security of Vericom against three possible attacks
and discuss how Vericom is resilient against such attacks. The simu-
lation results show that Vericom reduces the packet and computational
overhead as compared with conventional blockchains.

1.3. Paper organization

The rest of the paper is organized as follows. Section 2 studies
the existing solutions to enhance the blockchain scalability. Section 3
discusses the preliminary concepts upon which Vericom builds. Sec-
tion 4 outlines the details of Vericom. Section 5 presents the evaluation
results and discusses the performance of Vericom and finally Section 6
concludes the paper and outlines future research directions.



Ad Hoc Networks 133 (2022) 102882A. Dorri et al.
Fig. 2. A high-level topological view of the studied categorizes. (a),(b),(c) create static groups with large number of participants to limit the nodes in the blockchain while (d)
represents IoTA where transactions are linked (e) forms dynamic group with small participants that verify transactions.
2. On the scalability of blockchain

In this section, we study the existing solutions in the literature
to enhance the blockchain scalability for IoT. Let us first explain the
blockchain scalability limitation in a smart grid setting, as a represen-
tative use case of IoT, to motivate the discussions in the rest of this
section. The penetration of Distributed Energy Resources (DER) and
smart meters leads to the emergence of energy prosumers which are
the nodes capable of consuming and producing energy. A smart home
equipped with solar panels is an example of an energy prosumer. The
prosumers may trade their excess energy with other energy consumers
which leads to a significant volume of transactions as trading energy in-
volves broadcasting multiple transactions to find consumers/producers
and to negotiate trade terms with the intended seller/buyer [17].
Additionally, the grid participants may need to frequently (in 1 h or
0.5 h intervals) send data to the grid operator, or other trusted parties,
to ensure the reliability of the grid and balance the energy demand
with supply. The transactions and blocks need to be verified by the
blockchain participants which in turn demands significant computa-
tional resources from the participants while smart grid participants,
e.g. solar panels and smart meters, have limited resources.

Having motivated the need for blockchain scalability in cyberphys-
ical environments, we next study the existing optimization methods in
the literature to enhance blockchain scalability. Based on the commu-
nication topology employed by each optimization method, we classify
those in three categories namely hierarchical methods, sharding, and
clustering. A high-level topological view of these categories is shown
in Fig. 2.
3

2.1. Hierarchical methods

In hierarchical methods, as shown in Fig. 2a, the network is or-
ganized in the form of multiple hierarchies where the transactions
in each level of the hierarchy are only broadcast to the nodes in
the same level which in turn enhances the blockchain scalability. In
each level, a manager node functions as the central authority that
authorizes nodes to join the network at that level and forwards traffic
to/from the upper level hierarchies. The authors in [11] proposed a
hierarchical architecture for access control management in blockchain.
The framework comprises three main layers which are device, fog, and
cloud layers. The device layer encompasses the IoT devices. The fog
layer includes the first tier of the blockchain that is managed by a
central node. Each device in the device layer associates with a node
in the fog layer that stores the transaction of the device in a private
chain. The cloud layer comprises central servers that run the global
blockchain and store a copy of the private blockchains.

The authors in [18] proposed a hierarchical architecture that com-
prises four chains namely: (1) payment engine that handles the pay-
ments and micropayments, (2) compute engine that governs the smart
contracts and runs distributed applications, (3) storage engine that
stores the data associated with transactions, and (4) core engine that
comprises of a public ledger that connects all chains and enables
transaction exchange between other chains, i.e., engines.

Side chains are introduced to enhance the blockchain scalability and
reduce delay in trading assets [19,20]. To create a side chain, a user
locks a particular amount of asset in the main chain and transfers it
to the side chain where it can be traded with other parties without
requiring the transactions to be sent to the main chain. Once the trade is



Ad Hoc Networks 133 (2022) 102882A. Dorri et al.
concluded, the asset ownership information is transferred to the parent
chain and the side chain is closed [20].

2.2. Sharding

Sharding refers to partitioning the network where each partition,
also known as shard, functions independently and is managed by a
shard manager (see Fig. 2b). The transactions and blocks generated by
the nodes in each shard are only broadcast and verified in the same
shard which in turn increases scalability. Shard-to-shard communica-
tion is limited to where the verification of a transaction in one shard
requires input from a transaction in another shard, e.g., spending the
output of a transaction in a different shard. In such cases, the managers
of the involved shards communicate to verify the transaction.

The authors in [12] proposed a sharded blockchain architecture to
enhance scalability of the blockchain for IoT applications. In each shard
a manager node authorizes the nodes that can join the shard, verifies
new transactions, and stores new blocks. The shards are connected
through a main shard where the shard managers connect to reach
consensus on sub-blocks, i.e., the chains in each shard.

2.3. Clustering

Clustering enhances blockchain scalability for IoT by reducing the
number of nodes that participate in blockchain management. The net-
work is clustered into multiple groups (see Fig. 2c). In each cluster, a
node with sufficient computational resources is selected as the cluster
head (CH) that (i) receives transactions from the cluster members
and broadcasts to the blockchain, (ii) participates in the blockchain
by verifying new transactions and storing blocks, and (iii) forwards
transactions to the cluster members if they are the destination.

Unlike sharding where communication between shard managers
is limited to selected transactions, clustering broadcasts all blocks
and transactions between the CHs. In [13] we introduced a scal-
able blockchain where new blocks and transactions are broadcast and
verified only by the CHs. The cluster members populate an Access
Control List (ACL) to authorize particular nodes in the network to
send them transactions. CHs employ the ACL to decide whether to
send a transaction to the cluster members or to other CHs. In [21]
the authors introduced a novel solution to group the transactions and
thus participating nodes in the smart grid utilizing smart contracts.
Benefiting from the autonomous feature of the smart contract, the
grouping is performed without reliance on any third party.

2.4. IoTA

IoTA [22] has been introduced as a scalable solution that can
address the limitations of blockchain for large scale IoT. IoTA is
not a blockchain but a distributed ledger technology, where unlike
blockchains transactions are not committed in the form of blocks.
Instead, IoTA introduced the Tangle (see Fig. 2d) that creates a directed
acyclic graph (DAG) to store transactions. In order for a transaction to
be stored in IoTA, the transaction generator must randomly select and
verify two previously generated transactions. As more nodes verify a
transaction, and thus more transactions are chained to it, the weight
and thus confirmation level of the transaction increases.

2.5. Discussion

Having discussed the key methods employed to increase blockchain
scalability, we next evaluate such methods and highlight their limita-
tions for IoT.

In the outlined methods, the network is divided into subgroups
which are managed by a central manager which in turn leads to a
decentralized topology. The manager still suffers from the centraliza-
tion challenges including privacy, security, single point of failure and
4

scale. The reduced number of participants in each group, facilitates user
deanonymization as the malicious nodes deanonymize the users from
a smaller pool. In the above methods, there is a trade-off between the
number of groups, e.g., clusters, and the centralization degree. Fewer
groups increase scalability but lead to more centralization.

In hierarchical methods, the packets will eventually traverse multi-
ple tiers before being considered as valid which in turn increases the
delay in verifying transactions. In sharding methods, intra-shard com-
munication and verification remain challenging and incur significant
delay.

IoTA relies on broadcast communications which in turn suffers from
high packet overhead as in conventional blockchains. IoTA improves
the verification processing overhead as fewer nodes confirm a transac-
tion, however, it comes with the cost of increased delay as transactions
shall wait for longer time to receive enough weight. Additionally, IoTA
relies on a coordinator node that centrally confirms transactions each
two minutes which in turn suffers from centralization and moves away
from distributed technology [23].

Vericom introduces a distributed yet scalable blockchain by mul-
ticasting traffic to a randomly selected set of nodes that verify a
transaction/block (see Fig. 2e). The verifier set is unique for each
transaction/block and is selected randomly and dynamically based
on the hash of the transaction/block content which in turn increases
blockchain security against malicious nodes that may store fake trans-
actions. The verifier set dynamically changes per transaction/block
which moves away from centralization and thus mitigates the related
challenges such as privacy and security. Any of the participating nodes
in blockchain may also choose to verify new blocks or transactions to
detect misbehavior. Malicious nodes are isolated from the network to
mitigate the impact of attacks. By introducing a distributed yet scalable
architecture, Vericom supports a larger number of participating nodes
which in turn reduces the chance of user deanonymization as a huge
volume of transactions are stored in the main chain.

Depending on the read/write permissions of the participating nodes,
blockchain can be categorized as [24]: (i) Public where all nodes
have equal read/write permissions and any node can participate on
blockchain, and (ii) Private where authorized nodes may only have
write permission, i.e., store new blocks and a selected node authorizes
the nodes that can participate on the network. The discussion in the
rest of this paper applies to both public and private chains, however,
the maximum benefit is for the public chains due to the large scale and
openness of such ledgers.

Having discussed the motivations behind Vericom and the core
contributions, we next study the preliminaries.

3. Preliminaries

In this section, we briefly outline some algorithms that are partially
employed in Vericom. Vericom delivers a distributed yet scalable
blockchain architecture for IoT by significantly reducing the com-
munication overhead, achieved through dynamic multicast, and the
computational overhead, achieved through the use of hash function
outputs for randomized and secure verifier set selection. Vericom is part
of a larger project with the aim of designing an IoT-friendly blockchain
architecture. In our earlier work, Tree-chain [25,26], we introduced a
fast consensus algorithm where a leader is selected randomly to commit
transactions that match a particular pattern in the blockchain. Tree-
chain is a lightweight validator selection algorithm (also known as
consensus algorithm in the literature) that significantly reduces the
computational overhead and delay associated with storing new blocks
by randomizing the selection of validator sets based on hash function
output. The upper-bound throughput of the Tree-chain is the speed at
which a validator can verify a transaction which is in near real-time.
Such fast transaction commitment requires fast transaction delivery to
the validators which is impossible in the existing blockchains due to the
broadcast nature. Each validator has limited bandwidth which limits



Ad Hoc Networks 133 (2022) 102882A. Dorri et al.
Fig. 3. A high level view of (a) conventional blockchains and (b) Tree-chain.

the number of transactions/blocks it can receive and thus impacts the
blockchain throughput. In other words, Tree-chain shifts the transac-
tion throughput bottleneck from the consensus algorithm to the packet
propagation and transaction delivery. Vericom aims to address this
limitation. In this paper and without loss of generality, we assume that
Tree-chain is employed as the underlying validator selection algorithm.
However, Vericom is applicable with any other validator selection
algorithm.

In Tree-chain the randomization among validators is achieved at
two levels:

(i) Transaction level where the validator of each transaction is se-
lected randomly based on the hash of the transaction content. Each val-
idator commits transactions whose hash value starts with a particular
character, known as the consensus code.

(ii) Block level where the consensus code corresponding to each
validator is randomly allocated based on the hash of the PK of the
validator.

As shown in Fig. 3, Tree-chain embraces the concept of forking
where each ledger is managed by a particular validator, i.e., each
ledger contains transactions that all fall within the same consensus
code. Depending on the weight of their PK, the validators are allocated
a Consensus Code Range, which is the most significant characters of the
hash function output. Each validator only commits transactions whose
hash falls within its corresponding consensus code range. Unlike tree-
chain, Vericom is not a validator selection algorithm. Instead, Vericom
focuses on routing and verifying the already generated blocks and
transactions.

Another basic building block we partially employed in Vericom is
the routing algorithm proposed in our earlier work [27]. We intro-
duced an anonymous routing method that routes transactions from
the source node to the destination on the basis of PK. Designated
5

Table 1
Definition of the abbreviations and indexes used in this paper.

Notion Meaning

PK Public Key
CCR Consensus Code Range
VN Validator Node
NN Normal Node
BN Backbone Node
RUI Route Update Interval
TMF Traffic Management Fee
TF Traffic Fee
TA Traffic Accounting
WD Weight Dictionary
VRD Validation Range Distributor
VR Validation Range
KWM Key Weight Metric

nodes in the network form a backbone network. Each backbone node
receives transactions where the hash of the transaction destination
starts with specific characters. The destination nodes join the backbone
node that is responsible for managing their transactions by sending a
join request transaction to the backbone node. The backbone nodes
route transactions based on the PK of the destination.

In this paper, we employ the concept of backbone network, how-
ever, the backbone network is responsible for managing all blockchain
traffic, including blocks and transactions, and introduces a new method
to define the destination of the incoming traffic based the hash function
output of the traffic. The backbone nodes do not broadcast the traffic,
instead they multicast the traffic flow to a verifier set, which in turn
reduces the packet overhead and bandwidth consumption.

Having discussed the background information, we next outline the
details of Vericom.

4. Vericom: A verification and communication architecture for
IoT-based blockchain

This section outlines the details of Vericom. Table 1 presents a
definition of the key abbreviations used in this paper.

4.1. Overview

Vericom introduces a distributed yet scalable blockchain by shifting
from broadcasting to dynamic and randomized multicasting of the
traffic flow. A high-level picture of Vericom is shown in Fig. 5 and a
summary of the core steps is given in Algorithm 1. As Vericom logic is
distributed across several network entities, the first entity mentioned in
each line in Algorithm 1 is the entity that conducts the action explained
in the line. The verifiers of a particular transaction/block are identified
based on the output of the hash of the traffic content which ensures
randomized and dynamic verifier selection. This in turn reduces the
communications overhead and computational overhead for verifying
new blocks and transactions. Verifying a transaction/block typically
involves matching the PK with the corresponding signature. Vericom
consists of two layers namely:

• transmission layer: where the traffic is multicasted to a dynam-
ically selected group of recipients by a group of nodes selected
as backbone nodes. The latter are nodes with higher computa-
tional resources that route traffic based on the hash of the traffic
content. In conventional blockchains, the packets eventually are
routed by the Internet backbone network using IP. Vericom in-
corporates the backbone network which reduces packet overhead
and delay in transmitting data as traffic is directly routed by the
backbone network rather than broadcast to all nodes. This in turn
reduces the number of hops traffic needs to travel,



Ad Hoc Networks 133 (2022) 102882A. Dorri et al.
Fig. 4. A high level view of information flow in Vericom (t refers to a transaction and
b refers to a block).

Algorithm 1 A summary of Vericom (N: normal node, BN: backbone
node, VN: verifier node).
1: Input: tn
2: Output: Verified block
3: N: Send tn to BN ⊳ Transmission layer
4: BN: Identify the validator based on hash
5: BN: Multicast tn to VN
6: if VN matches tn.PK with tn.Sign then ⊳ Verification layer
7: tn is verified
8: VN: Send tn to BN ⊳ Transmission layer
9: BN: Send tn to the Validator (Val)

10: Val: Commit tn to a new block (B)
11: Val: Send B to BN ⊳ Transmission layer
12: BN: Multicast B to the verifiers
13: VN: Verify B ⊳ Verification layer
14: VN: Send verified B to BN ⊳ Transmission layer
15: BN: Broadcast B

• verification layer: where a set of nodes are randomly selected
to verify transactions or blocks. Vericom differentiates between
verifiers and validators. A verifier is a node that verifies a newly
generated block, while validator refers to a node that first ver-
ifies newly generated transactions then commits them in the
blockchain by following the Tree-chain consensus algorithm. By
reducing the number of nodes that need to verify traffic the
computational overhead significantly reduces.

To protect the security of the framework against malicious nodes
that may falsely claim a fake transaction as valid, Vericom selects the
verifier/validator set randomly based on the hash of the traffic content.
The dynamicity and unpredictability of this process are fundamental
in ensuring the security of Vericom while reducing overheads. Fig. 4
depicts a high-level view of Vericom traffic flow. Algorithm 1 identifies
the flow in which the traffic passes these layers which is further
explained in the rest of this section.

As an example scenario, consider the network shown in Fig. 5.
Backbone Node.1 (BN.1), BN.2, BN.3, and BN.4 form the backbone
network. Assume the consensus code allocated to each of the Validator
Nodes (VNs) is as in Table 2. Normal Node.1 (NN.1) generates a trans-
action whose hash is ‘‘K23HQ’’ and sends to its corresponding backbone
node, i.e. BN.1 (line 3, Algorithm 1). The transaction is multicasted
to: (i) the validator set (line 4) which in this example are the main
validator (selected based on the consensus code allocations and the
hash of the transaction, VN.3 in this scenario, and (ii) the validator that
is allocated to the next consensus code range of the main validator,
i.e., VN.4 in this scenario. BN.1 routes the transaction to BN.3 and
BN.4 using their corresponding IP addresses (line 5). Each BN populates
and updates a routing table based on conventional IP-based routing
6

Table 2
Consensus code allocation for scenario in Fig. 5.

Validator ID Consensus code

VN.1 [0–9]
VN.2 [A–H]
VN.3 [I–P]
VN.4 [Q–Z]

algorithms that is used to route traffic in backbone network. Upon
receipt of the transaction, BN.3 and BN.4 send the transaction to VN.3
and VN.4 to be verified (lines 6&7) and committed in the blockchain.
Depending on the application, the verification of a transaction may
involve different steps. Recall that we assume Tree-chain is employed as
the underlying consensus algorithm, thus the main validator commits
the transaction in the blockchain (line 10, the validator skips lines 8&9
as the same nodes that verify transactions commit them in blockchain).
After generating a new block, the main validator sends the block to
the backbone node (line 11) which is then multicasted to the verifier
set (line 12). After verifying the new block, the verifiers send it to the
backbone nodes to be broadcast in the network (lines13–15). In conven-
tional blockchains, for a transaction to be verified and committed, two
broadcasts shall happen (broadcasting the transaction and the block).
Vericom relies on multicasting for transaction and block verification,
however, eventually the block needs to be broadcast to be stored by the
nodes. The storage process is beyond the scope of Vericom and thus we
leave that for future work. We discuss the details of the outlined process
in the rest of this section.

4.2. Transmission layer

Unlike conventional blockchains where traffic is broadcast, in Veri-
com, the traffic is routed by the backbone nodes and then multicasted to
intended recipient groups that are dynamically identified based on the
verification layer (discussed later in this section). To achieve this goal,
we introduce a backbone network along with a PK-based multicasting.
Highly stable and resourceful nodes in the network jointly form a
backbone network that is the core for traffic management. The backbone
network receives traffic from all IoT nodes, e.g. solar panels or IoT
devices in a smart home, and delivers it to the intended destination.
The formation of the backbone depends on the level of trust to the
backbone nodes. We consider two scenarios, trusted backbone nodes
and untrusted backbone nodes, which we discuss separately below.

4.2.1. Trusted backbone nodes
In this scenario, the backbone nodes are trusted, e.g., the servers

provided by the Internet Service Providers (ISPs) or the government.
This is similar to the Internet backbone network that manages the
main Internet traffic flow. In conventional blockchains the traffic is
technically broadcast in an overlay network, while in the lower layers,
the traffic is routed by the trusted Internet backbone nodes (as with any
other Internet traffic). Vericom aims to remove the overlay network
in conventional blockchains and incorporate the backbone network
concept in the blockchain design to reduce delay and packet overhead.
As outlined earlier, even the existing pure distributed blockchains rely
on trusted Internet backbone nodes to relay traffic, thus, the trust
level to the backbone nodes does not impact the distributed nature
of the blockchain. The reason is that while communication traverses
the backbone, the routing decisions are made independently of the
backbone. Conventionally, transactions and blocks are broadcast to all
participants. Vericom replaces broadcast with dynamic multicast to a
randomly selected set of nodes based on hash outputs, which maintains
independence of routing decisions from the backbone and avoids any
centralization of trust. Apart from the underlying transmission layer,
blockchain tasks are still conducted in a distributed manner as outlined
later in verification layer.



Ad Hoc Networks 133 (2022) 102882A. Dorri et al.
Fig. 5. A high level view of Vericom.
The trusted backbone nodes communicate to form the backbone
network. We assume an authorized organization, e.g., the government
or the Internet backbone network provider, connects the potential
backbone nodes. Vericom routes traffic based on the hash function
output of the traffic as outlined in the verification layer.

4.2.2. Untrusted backbone nodes
In this scenario, we assume that the backbone nodes are not trusted,

neither to other backbone nodes nor to the network participants. This
in turn makes security challenging as a malicious backbone node may
attempt to drop incoming/outgoing traffic. Note that as blockchain
transactions are sealed using asymmetric encryption, modification of
the transaction/block content by the malicious backbone nodes is
not possible. To enhance the security of Vericom in the presence of
untrusted backbone nodes, we employ neighbor monitoring algorithms
(such as in [28]) where the behavior of each backbone node is moni-
tored by its neighbors which in turn can detect malicious activities. The
neighbor nodes monitor the volume of incoming and outgoing traffic
to a backbone node and identify the cases where the backbone node
may drop all or selected packets. The monitoring algorithm presented
in [28] does not require the analysis of the content of the packets in
the network and the results in this work depict that power consumed
is negligible. Thus, the computation burden on the neighbor nodes
increases minimally due to monitoring. We introduce a random and
unpredictable method to select neighbors for monitoring the behavior
of each node to enhance the security as compared with conventional
neighbor monitoring methods. To identify the backbone nodes and
the corresponding monitoring nodes, Vericom relies on hash function
output as outlined later in Section 4.3. In summary, a smart contract
calculates a weight value corresponding to the PK of each node and
orders the interested nodes in a descending list. The first node in the
list is selected as the backbone node and the following n nodes in the
7

list are selected as monitoring nodes for the first node (assuming that
n is the number of nodes that shall monitor a backbone node). This
process continues to cover all interested nodes. The neighbors will also
be incentivized to participate in backbone network by receiving a fee
(as discussed later in this section).

The backbone nodes receive traffic from the source IoT nodes and
route them to the proper destination, that is identified based on the
verification layer (see Algorithm 1). To receive traffic, the nodes shall
join at least one backbone node. Otherwise, they will fail to receive
traffic and thus will be isolated from the network.

Each validator or verifier orders the list of backbone nodes based
on the delay experienced to reach them and sends a join request to the
backbone node with minimum delay. The backbone nodes have limited
resources and thus can serve limited number of nodes (depending on
the amount of available resources and the volume of traffic in the net-
work). To avoid queuing and thus reduce communication delay, each
backbone node accepts join requests only from a particular number of
nodes. Once the maximum number of nodes join, the backbone node
rejects the join requests from the new nodes. The nodes then send the
join request to the next backbone node in their list. This ensures the
minimum delay in routing traffic in the network. Once all nodes join
the backbone network, each backbone node broadcasts the PK of its
corresponding nodes to the rest of the backbone nodes. The backbone
nodes maintain a routing table that stores the list of nodes associated
with other backbone nodes and their corresponding role (i.e., validator
or verifier). During a particular time-interval, known as route update
interval (RUI), the backbone nodes broadcast an update packet that
contains the updated list of nodes connected to the backbone node.
This in turn ensures that the backbone nodes can update the routing
information in case of any change to the underlying nodes. To reduce
packet overhead, each backbone node only generates an RUI if changes



Ad Hoc Networks 133 (2022) 102882A. Dorri et al.

t
a

e
T
t
k

Table 3
The routing table of BN.1 in Fig. 5.

Validator ID Next hop

VN.4 4
VN.2 2
VN.3 2

happened to the underlying nodes list since the last RUI (or initializa-
tion). As an example the routing table of BN.1 in Fig. 5 is as shown
in Table 3. To reduce the size of the routing table, each BN may only
store the next hop in the path to reach a particular verifier (which is
similar to routing tables in the Internet). The backbone nodes employ
conventional routing algorithms such as OSFP [RFC 2328] to decide on
the next hop node toward the destination.

4.2.3. Incentives
The backbone nodes dedicate communication and computational

resources to manage the traffic flow that in turn incurs monetary costs.
To incentivize nodes to join the backbone network, we introduce a
Traffic Management Fee (TMF). TMF is paid by the validators based on
he total number of blocks they generated during an epoch time known
s 𝛩. In our setting, 𝛩 = 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠_𝑝𝑒𝑟𝑖𝑜𝑑 (see Section 3). At the end of

a 𝛩 each validator calculates TMF as:

𝑇𝑀𝐹 = 𝑇𝐹 ∗ 𝑙𝑒𝑑𝑔𝑒𝑟_𝑙𝑒𝑛𝑔𝑡ℎ (1)

where Traffic fee (TF) is the cost for forwarding the traffic related to
a single block and is defined by the blockchain designers. The size of
the block and the bandwidth cost are two key factors that impact TF
value. Ledger_length is the total number of the blocks each validator has
generated during 𝛩. Recall that we base Vericom on tree-chain where
ach validator stores blocks in its own ledger. The validator then pays
MF to a Traffic Accounting (TA) smart contract. TA is hard coded by
he blockchain designers in the first block in the blockchain that is
nown as the genesis block.

TA collects TMF from the validators and then equally distributes
between the backbone nodes. Upon receipt of the payment from the
validator, TA verifies if the validator has paid the right amount by
calculating the TMF and matching with the received fund. If a validator
pays less or no fee to the TA contract, the TA will notify the rest of the
network by broadcasting a transaction. The validator will be denied
from joining the validators in the next consensus period round until
payment is made.

As evident from the above discussion, the only penalty for a val-
idator that pays no/less fee is to prevent them from functioning as
validator in future. Note that TMF is small and the benefits of being
a validator are much higher than the TMF (as the validators collect
transaction fees). An alternative option is to block specific amount of
money from each validator initially and deduct from the blocked money
in case the validator fails to pay the fee.

As outlined above, the transmission layer receives the traffic from
the source nodes and multicast to dedicated nodes that are identified
by the verification layer.

4.3. Verification layer

The verification layer aims to identify the destination of the traf-
fic received by the backbone nodes. This reduces the computational
overhead associated with transactions/block verification, compared to
conventional blockchains, where all nodes must verify the new transac-
tions or blocks. The verification of new transactions or blocks typically
involves matching the signature with the PK of each transaction. To
protect against malicious nodes that may falsely claim a fake trans-
action/block as valid, the destination nodes are selected randomly,
dynamically, and uniquely for each transaction/block. The destination
8

is either (i) validator set that verifies and commits new transactions
Table 4
An example of WD.
𝛼 𝜔(𝛼)

a–z 0–25
A–Z 26–51
0–9 52–61

in the blockchain by following the consensus algorithm, or (ii) verifier
set that is a group of nodes that verify newly generated blocks. Both
these sets are randomly and dynamically selected from the same pool
of nodes in the network based on the hash of the traffic as outlined
below.

To identify the validator/verifier set corresponding to each transac-
tion/block, Vericom relies on the hash function output of the traffic.
Each potential character in the hash function output is allocated a
particular weight that is identified in a Weight Dictionary (WD) an
example of which is shown in Table 4. During the bootstrapping, the
participating nodes in the blockchain (referred to as PN) that are
interested to function as validator/verifier broadcast a validator interest
transaction that contains their PK. The nodes shall broadcast the interest
transaction within a particular time frame referred to as 𝛾, defined by
the network designers. To ensure consistency among the participating
nodes, during the network setup, a Validation Range Distributor (VRD)
smart contract is deployed in the genesis block, i.e., the first block
in the blockchain. Validation Range (VR) is a range of Most Significant
Character (MSCh) of the hash function output. To communicate with
VRD, the participating nodes shall populate the address of the VRD,
i.e., the hash of its content, as the destination in their transaction. The
interested nodes send their PK to the VRD.

At the end of 𝛾, the VRD smart contract starts calculating a Key
Weight Metric (KWM) corresponding to the each received PK. KWM is
calculated as follows (k is the size of the hash function output):
𝑘
∑

𝑖=1
𝑓𝑤(𝛼i) (2)

where 𝑓𝑤(𝛼) is the final weight of 𝛼 which is calculated as:

𝑓𝑤(𝛼) =

{

𝑤(𝛼) if 𝑟 = 0
𝑤(𝛼) ∗ (0.2𝑟) if 𝑟 > 0

(3)

where r is the number of times that 𝛼 is repeated in the hash function
output. This in turn ensures that the final KWM corresponding to each
PK is unique. The VRD then creates a descending list of the PKs based
on the KWM values and allocate a particular VR. The size of VR is
defined as follows:

⌈

𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓 _𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟𝑠
62

⌉

where 62 is the total number of possible values in each byte of the
hash output which is from the following range: {0,..,9,a, . . . ,z,A, . . . ,Z}.
The above division may have fractions. In that case, the first node in
the list will be allocated a larger VR to accommodate all values. As an
example, in a network with 10 nodes, the size of the VR allocated to
the first node is 8 and the size of VR for other nodes is 6. The VR is
allocated to the validators based on the position of PK of the validator
in the KWM list, e.g., the validator with the highest value of KWM is
allocated to the first VR. The validators form a Distributed Hash Table
(DHT) that includes the PK of each validator and its corresponding VR
that is used to identify the corresponding VR to each validator during
for routing traffic.

When a backbone node receives traffic from the source node, it
decides on the verifier/validator set by evaluating the output of the
hash of the traffic, i.e., block or transaction content. Each set contains
a main node, which acts as the leader of the nodes in the set, and the
sub nodes which are the nodes that monitor the behavior of the main
node. The backbone node first must identify the main node in the set.



Ad Hoc Networks 133 (2022) 102882A. Dorri et al.
For transaction ti, the main validator is the validator whose VR covers
the MSCh of h(ti) where h(x) represents the hash function output of
x (Step 2 Fig. 4). Once the main validator is identified, the backbone
nodes add n successors and predecessors of the main validator to the
validator set as sub validators defined in the DHT corresponding to the
VR allocation. 1 ≤ 𝑛 ≤ 𝑁∕4 where N refers to the total number of
validators in the network. The upper bound value for n is identified
in a way to ensure there will be no overlap between validator set and
verifier set (see discussion in the rest of this section). Successors and
predecessors are defined as the nodes that are immediately after and
before the main validator in DHT according to the KWM. The value of
n depends on the application. Larger n increases security to colluding
malicious nodes in the validator sets, but also increases computational
overhead for verifying and committing new transactions. The validator
set first has to verify the transaction that involves matching the PK
of the transaction with the corresponding signature (step 3, Fig. 4).
Depending on the application, other steps might also be involved, e.g. if
a transaction is chained to a previous transaction, the verifier shall
verify the existence of the previous transaction. After verification, the
main validator commits the transaction in the blockchain into a new
block (following Tree-chain algorithm). The sub validators monitor the
behavior of the main validator and inform the rest of the network
in case any malicious activity, e.g., not storing new transactions or
storing fake transactions, is detected. In case a different consensus
algorithm other than Tree-chain is employed, the validators will add
the transactions that are already verified by the verifier set to the pool
of pending transactions.

Once the new block is committed, the validator sends the block to
its corresponding backbone node to be verified (step 4, Fig. 4). The
block must be signed by the nodes in the verifier set to be considered
as a valid block in the blockchain. Fig. 6 shows the steps involved in
verifying new blocks. Similar to validator set, the verifier set is identi-
fied based on the hash of the block. The verifier set consists of the main
verifier and subverifiers which are m successors and predecessors of the
main verifier. To enhance the security of Vericom against malicious
nodes that may attempt to commit fake blocks and verify them as
true blocks, the underlying nodes in the validator set shall always be
different from the verifier set. In case the validator and verifier set have
overlapping nodes, the main verifier will be:

𝑀𝑎𝑖𝑛𝑉 𝑒𝑟𝑖𝑓 𝑖𝑒𝑟 =

{

2𝑛 if 𝑛 > 𝑚
2𝑛 + 𝑚 if 𝑛 ≤ 𝑚

(4)

This ensures that there will be no overlapping nodes in two sets. Once
the nodes in the verifier set received the new block ((step 5, Fig. 4)),
they first verify the block and then sign and send it to the main
verifier (see Fig. 6). The verification of the block involves verifying
the underlying transactions and the block header (step 6, Fig. 4).
The transaction verification is as outlined earlier. The block header
verification involves matching the PK of the block generator with the
corresponding signature. Next, the verifier checks if the hash of the
block content falls within VR of the block generator. The main verifier
adds the signatures of all the nodes in the verifier set to the block and
multicast to the other validators in the network to be stored in the
blockchain (step 7, Figs. 4 and 6). The validators may accept the signed
block by the verifier set without verifying the underlying transactions.
All nodes in the blockchain still can verify the traffic confirmed by
the verifier set which in turn will detect any malicious activity (see
Section 5).

In summary, the verification layer ensures that each transaction/
block is verified twice by randomly selected nodes: first by the trans-
action validator set and second by the block verifier set.

5. Evaluation and discussion

In this section we provide qualitative security analysis as well as
quantitative performance evaluation.
9

Fig. 6. The process of verifying new blocks.

5.1. Security and privacy analysis

Threat model: The malicious node can be any node in the network.
In case of trusted backbone nodes, it is assumed that the backbone
nodes function honestly and employ security safeguards that protects
them against being compromised. The malicious node may drop the
received traffic, generate fake transactions or blocks, and falsely claim
that a transaction is valid. The malicious node may collaborate with
other nodes to increase the chance of a successful attack.

Privacy: Vericom does not impact the anonymity level of the trans-
actions stored in the blockchain. However, in conventional blockchains
the transactions are broadcast thus the underlying nodes may not
record the IP address of the underlying IoT nodes. In Vericom, the
participating nodes shall record the IP of the backbone nodes which
may potentially reveal information about the actual location of the
backbone nodes. Note that the backbone nodes only forward traffic.
If a backbone node wishes to generate a transaction, it employs a PK
similar to other nodes which protects the anonymity of the node.

Recall that the backbone nodes multicast traffic to the intended
group of recipients. This may potentially require the backbone node
to record the IP address of the nodes in the verifier set. To prevent the
backbone nodes from tracking the location based on IP, the verifiers
may hide their IP using TOR browser [29].

Security: We discuss three security attacks:
False verification attack: In this attack, an IoT node or a group of

nodes in the verifier set collaborate to mark a fake transaction or block
as valid (step 3 & 6, Fig. 4). Recall from Section 4 that Vericom limits
the number of nodes that verify a transaction or block to a verifier set.
If a single verifier attempts to make a false claim, other verifiers will
detect the malicious activity. The verifiers then broadcast a transaction
to inform the rest of the network of the malicious behavior. The fake
transaction is also broadcast to the network that enables the rest of the
IoT nodes to verify the claim of the verifier set.

It may be possible that all the nodes in the verifier set collabora-
tively attempt to store fake transactions in the blockchain. As outlined
in Section 4, once the main verifier commits the transaction in the
blockchain, the block is sent to a new set of randomly selected nodes
for verification which will detect the fake transaction (lines 9–11,
Algorithm 1). If the new selected verifier set are malicious, they accept
the block and mark it as valid. Vericom is designed for IoT that
comprises millions of nodes, thus, it is expected that a large number
of nodes will participate in the blockchain management which in turn



Ad Hoc Networks 133 (2022) 102882A. Dorri et al.
makes it challenging for the malicious nodes to compromise all nodes
in a randomly selected verifier set. Recall that any node may attempt
to verify the transactions and blocks that are already verified by the
verifier set. Such nodes will detect the malicious behavior. Given the
large scale of IoT, it is highly likely that at least one node will allocate
resources to verify transactions, this can be the SPs to ensure secure
and safe services.

Fake transaction storage attack: In this attack, the malicious node
attempts to store a fake transaction in the blockchain. The verifier
of each transaction is identified based on the hash of the transaction
content which is random and unpredictable. The malicious node might
have control over (or collaborate with) other verifiers. In such case, if
the transaction hash falls within the consensus code range managed by
the malicious nodes, they can mark the fake transaction as valid. The
validators attempt to store the verified transactions in the blockchain.

New blocks are verified by a randomly selected verifier set which
will detect the fake transaction. In the worst case, if the nodes in the
verifier set collaborate with the malicious node, the fake transaction
will be broadcast as a valid transaction. Note that other nodes in
the network can still verify the transactions and may detect the fake
transaction. If so, the transaction ID is broadcast to the network the
malicious nodes, including the verifiers, will be removed from the
verification layer. It also worth noting that Vericom is designed for IoT
where the number of verifiers is expected to be large. Plus, the verifiers
are always selected randomly in an unpredictable manner, thus, it is
hard for the malicious nodes to control the block generator and the
verifier set.

Dropping attack: In this attack, a backbone node drops the incom-
ing traffic to prevent blockchain participants from receiving service
(applicable only in untrusted backbone node’s scenario). Recall from
Section 4 that in the untrusted backbone node scenario, a group of
nodes collaboratively manage the traffic where the main node forwards
the traffic and other nodes monitor the behavior of the main node
which in turn enable them to detect any malicious activity. In case
of a collaborative attack, the IoT nodes will not receive any service,
thus will inform the rest of the network. The backbone nodes then
will reconstruct the backbone network and prevent the malicious nodes
from joining the network.

5.2. Performance evaluation

In this section, we study the performance of Vericom. We imple-
mented Vericom using NS3 [30] incorporated with crypto++ security
library to implement security features. During the evaluation, a total
of 1000 transactions have been generated by the participating nodes
in the blockchain. We set the size of the verifier set as 3 in our
experiments. Note that Vericom employs tree-chain [25] as the under-
lying consensus algorithm. Both tree-chain and Vericom incorporate
fundamental changes to the conventional blockchains, thus we were
unable to use the existing blockchain simulation platforms, such as
Hyperledger [31] or Ethereum [32]. We compare Vericom performance
with a baseline scenario which is similar to conventional blockchains
where all transactions and blocks are broadcast and verified by all
participating IoT nodes. As our focus is on maintaining distribution for
IoT security, we refrain from comparing against hierarchical, clustered,
or sharded blockchains, as they intrinsically recentralize security and
trust. We studied the following metrics:

• Packet overhead: This is the cumulative packet overhead incurred
on the participating IoT nodes and is measured by summing the
size of the received traffic by these nodes.

• Verification processing time: This is the processing time taken
from a verifier to verify the transactions and blocks in the
blockchain. We disregard the processing time associated with
other blockchain-related tasks, e.g., consensus, as Vericom is not
impacted by those.
10
Table 5
Evaluating the scaling performance.

Metric Vericom Baseline

Packet overhead O(H) O(N2)
Verification processing time O(V) O(N)
Delay O(H) O(N)

H: Number of hops in the backbone network.
N: Number of IoT nodes in the blockchain.
V: Size of the verifier set.

Fig. 7. The cumulative packet overhead.

• Delay: This is the time taken for sending a transaction from IoT
node A to IoT node B.

• Vericom overheads: This is the extra overheads incurred by Veri-
com and includes: (i) the increased block size to include the
verifier set PK and signature, and (ii) the size of the routing table.

• Verifier set size: This metric evaluates the trade-offs between
security and overheads involved in the number of nodes that
participate in the verifier set.

We first evaluate the scaling performance metrics as a function of
the key network parameters. Table 5 outlines the results. In Vericom,
the packet overhead and delay in reaching another node depends
on the number of hops in the backbone network while in baseline
such overheads depend on the number of IoT nodes in the network
which is significantly greater than Vericom. Similarly, the verification
processing time in Vericom relies only on the number of nodes in the
verifier set while the baseline is impacted by the number of participat-
ing IoT nodes in the network. In Vericom the packet overhead scales
linearly with the number of hopes compared to quadratic overhead for
conventional blockchain networks. In the worst case scenario where
the nodes are connected linearly, i.e., in a chain structure, the packet
overhead in Vericom will be O(N) as the packets should travel through
all nodes.

Having discussed the scaling performance evaluation, we next eval-
uate the performance of Vericom based on the simulation output.

Packet overhead: The simulation results to evaluate the packet over-
head are outlined in Fig. 7. We increase the number of underlying
IoT nodes from 10 to 200 while the backbone network remains static
as 20 nodes. As evident from the results, Vericom packet overhead
remains constant as the number of IoT nodes increases at around 6000
KB, while the baseline packet overhead significantly increases reaching
from 10,000 KB to around 216,000 KB. The main reason is that in
Vericom the packets travel only among the backbone network and
the verifier set and thus the increased in the number of underlying
IoT nodes does not impact the general packet overhead, resulting in a
reduction of packet overhead of up to nearly two orders of magnitude
in this scenario over the baseline approach. However, in the baseline,
the packets must be broadcast to the whole network and thus, as shown
in Table 5, the packet overhead increases as the number of participating
IoT nodes increases.



Ad Hoc Networks 133 (2022) 102882A. Dorri et al.
Fig. 8. Studying the impact of backbone nodes on packet overhead.

Fig. 9. Studying the cumulative processing time.

Vericom packet overhead is largely impacted by the number of
backbone nodes. Next, we change the number of backbone nodes in
the network while the number of the underlying IoT nodes remains
constant as 200 nodes. The new backbone nodes connect to a randomly
selected existing backbone node. The source and the destination of the
blockchain traffic are selected randomly that ensures the structure of
the backbone network changes dynamically. The simulation results are
shown in Fig. 8. The packet overhead increases from around 5900 KB
with 2 backbone node to 6500 KB with 50 backbone nodes. Recall from
Table 5 that Vericom packet overhead depends on the number of hops
that the packets travel to reach a destination, thus the increased packet
overhead for larger number of backbone nodes is relatively small.

Verification processing time: Fig. 9 compares the processing time in
the baseline and Vericom to verify new transactions/blocks. Despite
the fact that the underlying verifiers dynamically change, the number
of nodes that verify new transactions/blocks, i.e., the size of the veri-
fier set, always remains constant, that is 3 in our experiment, which
results in a constant processing time in Vericom as the number of
IoT nodes increases. However, increasing the number of IoT nodes in
the baseline, increases the processing time as all the nodes verify new
transactions/blocks.

Delay: The simulation results to evaluate the delay in communica-
tions between two nodes are represented in Fig. 10. We randomly select
two nodes in the network to measure the delay while increasing the
number of blockchain participants from 10–200 nodes. The delay in
reaching another node in Vericom is in the range of [5–6] milliseconds
while delay in the baseline is in the range of [8–253] milliseconds.
Recall from Section 4 that Vericom routes packets among the backbone
nodes to reduce the delay while in baseline, the packets are broadcast
till reaching the destination which in turn significantly increases the
delay in communications.

Recall from Table 5 that the delay in Vericom largely depends on
the number of hops in a communication, thus we next study the impact
of varying the number of backbone nodes on the communication delay.
To prevent the traffic from traveling the same route while the number
11
Fig. 10. Studying the communication delay.

Fig. 11. Studying the communication delay while varying the number of backbone
nodes.

of backbone nodes increases, each new backbone node joins a randomly
chosen backbone node and the source and destination of the traffic are
randomly selected. Fig. 11 outlines the simulation results. A 25-fold
increase in the number of backbone nodes from 2 to 50 nodes results
in a 50% increase in communication delay.

Vericom overhead: Next we study the overheads incurred by Veri-
com. We first study the size of the routing table. As evident from
the simulation results shown in Fig. 12, the size of the routing ta-
ble increases from 0.9 KB to 8 KB while increasing the number of
blockchain validators from 10 to 200. Recall from Section 4 that the
routing table includes the PK of the validators and the IP address of the
next hop backbone node for routing traffic. We next study the increased
blocksize in Vericom to include the signature and PK of the verifiers.
The size of the PK and signature in a transaction in our simulation is
459B. Thus, generally the incurred overhead can be measured as (459
∗ V )B, where V is the size of the verifier set.

Verifier Set Size: Finally we study the impact of the size of the verifier
set on the security of Vericom. We used NS3 to simulate a network
where 50 nodes participate as verifiers. We run the simulation 5 times
and the results are the average values. For the packet overhead we
provided the error bar to show the changes in different runs. The upper
and lower bound of the error bar depict the deviation of the maximum
and minimum value of the packet overhead from the average value of
the packet overhead. The probability of the attack remains constant in
all runs. Recall that the verifier set are the selection of the nodes that
verify the newly generated blocks. If even a single node in the verifier
set detects a fake transaction, it will not sign the transaction which
will prevent the block from being stored in the blockchain. Thus, for
a successful attack, all nodes in the verifier set must collaborate. To
reduce the chance of the attack, one may consider large verifier set,
however, that in turn increases the processing overhead for verifying



Ad Hoc Networks 133 (2022) 102882A. Dorri et al.
Fig. 12. Studying the size of the routing table in backbone nodes.

new blocks and the packet overhead in the network as the architecture
will move toward broadcasting instead of multicasting. Fig. 13 outlines
the impact of the verifier set on the packet overhead and the probability
of a successful attack, i.e., the probability that all nodes in the verifier
set are collaborative malicious nodes. As evident from the results, by
increasing the size of the verifier set the probability of the successful
attack decreases. Recall that the participating nodes in the verifier set
are identified based on the hash function output which is completely
random and unpredictable. The table in Fig. 13 depicts the magnitude
of maximum observed error as a percentage of the average value of the
packet overhead (in each verifier set size) over the 5 simulations. As the
values in the table and Fig. 13 suggest, the error in the measurement
of the packet overhead is small as reflected in Fig. 13. This depicts that
the simulations run on the simulator do not vary greatly when repeated
and therefore, the results obtained are precise.

To complement our simulation analysis, we now derive the proba-
bility of a successful attack in Vericom as a function of the network
parameters. Consider a network with n verifiers where the size of
the verifier set is r. In general the probability of a successful attack
is calculated as follows:

𝑃 𝑛
𝑟 =

𝐶𝑛
1

𝐶𝑛
𝑟

where,

𝐶𝑛
1 =

(𝑛)!
(𝑛 − 𝑟)!

where,

(𝑛)! =
𝑛
∏

𝑖=1
𝑖

The outlined formula can be employed to calculate the chance of
successful attacks for a given network configuration and thus, decide
on proper values for verifier set size.

6. Conclusion

In this paper we introduced a Verification and Communication ar-
chitecture for IoT-based blockchain known as Vericom. Vericom intro-
duces a distributed yet scalable blockchain architecture by introducing
a PK-based traffic, i.e., transactions and blocks, multicasting algorithm
which in turn reduces the bandwidth consumption of the underlying
IoT nodes as compared with conventional blockchains where traffic is
broadcasted to all nodes. Vericom incorporates two layers which are:
(i) transmission layer where a backbone network is introduces to route
traffic, and (ii) verification layer where traffic is verified by a randomly
selected set of nodes that are unique for each transaction or block which
in turn reduces the computational overhead associated with verifying
new blocks and transactions. The simulation results show that Vericom
12
Fig. 13. Studying the impact of the verifier set in Veriom security.

reduces the blockchain packet and computational overhead by 90% in
a network with 200 nodes which in turn facilitates the adoption of
blockchain for low resource available IoT devices.

Interesting directions for future work on Vericom include better
support for direct node-to-node communication and optimizing the
blockchain storage. Vericom requires nodes to connect to a backbone
node that manages their traffic. In applications that require direct com-
munications between two nodes this may be challenging as the nodes
require to know the hash of the transaction prior to receiving the same.
Vericom considers optimizing traffic up to the point where blocks are
verified. After that the blocks are broadcast. Comprehensive research
is required to optimize the following steps that also involve blockchain
storage. We expect Vericom will enable significant improvements in
communication efficiency for blockchains.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] Z.-K. Zhang, M.C.Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, S. Shieh, IoT
security: ongoing challenges and research opportunities, in: 2014 IEEE 7th
International Conference on Service-Oriented Computing and Applications, IEEE,
2014, pp. 230–234.

[2] M.A. Khan, K. Salah, IoT security: Review, blockchain solutions, and open
challenges, Future Gener. Comput. Syst. 82 (2018) 395–411.

[3] W.H. Hassan, et al., Current research on Internet of Things (IoT) security: A
survey, Comput. Netw. 148 (2019) 283–294.

[4] F.A. Alaba, M. Othman, I.A.T. Hashem, F. Alotaibi, Internet of Things security:
A survey, J. Netw. Comput. Appl. 88 (2017) 10–28.

[5] O. Bouachir, M. Aloqaily, L. Tseng, A. Boukerche, Blockchain and fog computing
for cyberphysical systems: The case of smart industry, Computer 53 (9) (2020)
36–45.

[6] H.-N. Dai, Z. Zheng, Y. Zhang, Blockchain for Internet of Things: A survey, IEEE
Internet Things J. 6 (5) (2019) 8076–8094.

[7] D. Berdik, S. Otoum, N. Schmidt, D. Porter, Y. Jararweh, A survey on blockchain
for information systems management and security, Inf. Process. Manage. 58 (1)
(2021) 102397.

[8] S. Otoum, I. Al Ridhawi, H. Mouftah, Securing critical IoT infrastructures with
blockchain-supported federated learning, IEEE Internet Things J. (2021).

[9] K.-P. Yu, L. Tan, M. Aloqaily, H. Yang, Y. Jararweh, Blockchain-enhanced data
sharing with traceable and direct revocation in IIoT, IEEE Trans. Ind. Inf. (2021).

[10] S. Nakamoto, Bitcoin: A Peer-To-Peer Electronic Cash System, Tech. rep.,
Manubot, 2019.

[11] M. Ma, G. Shi, F. Li, Privacy-oriented blockchain-based distributed key manage-
ment architecture for hierarchical access control in the IoT scenario, IEEE Access
7 (2019) 34045–34059.

http://refhub.elsevier.com/S1570-8705(22)00074-9/sb1
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb1
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb1
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb1
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb1
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb1
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb1
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb2
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb2
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb2
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb3
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb3
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb3
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb4
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb4
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb4
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb5
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb5
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb5
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb5
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb5
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb6
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb6
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb6
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb7
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb7
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb7
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb7
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb7
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb8
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb8
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb8
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb9
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb9
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb9
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb10
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb10
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb10
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb11
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb11
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb11
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb11
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb11


Ad Hoc Networks 133 (2022) 102882A. Dorri et al.
[12] W. Tong, X. Dong, Y. Shen, X. Jiang, A hierarchical sharding protocol for multi-
domain iot blockchains, in: ICC 2019-2019 IEEE International Conference on
Communications (ICC), IEEE, 2019, pp. 1–6.

[13] A. Dorri, S.S. Kanhere, R. Jurdak, P. Gauravaram, LSB: A lightweight scalable
blockchain for IoT security and anonymity, J. Parallel Distrib. Comput. 134
(2019) 180–197.

[14] L. Tseng, L. Wong, S. Otoum, M. Aloqaily, J.B. Othman, Blockchain for managing
heterogeneous Internet of Things: A perspective architecture, IEEE Netw. 34 (1)
(2020) 16–23.

[15] J. Yun, Y. Goh, J.-M. Chung, DQN based optimization framework for secure
sharded blockchain systems, IEEE Internet Things J. (2020).

[16] A. Dorri, C. Roulin, R. Jurdak, S.S. Kanhere, On the activity privacy of blockchain
for IoT, in: 2019 IEEE 44th Conference on Local Computer Networks (LCN), IEEE,
2019, pp. 258–261.

[17] M. Khorasany, A. Dorri, R. Razzaghi, R. Jurdak, Lightweight blockchain frame-
work for location-aware peer-to-peer energy trading, Int. J. Electr. Power Energy
Syst. 127 (2021) 106610.

[18] Y.E. Oktian, S.-G. Lee, H.J. Lee, Hierarchical multi-blockchain architecture for
scalable Internet of Things environment, Electronics 9 (6) (2020) 1050.

[19] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller,
A. Poelstra, J. Timón, P. Wuille, Enabling blockchain innovations with
pegged sidechains, 2014, URL: http://www.opensciencereview.com/papers/123/
enablingblockchain-innovations-with-pegged-sidechains72.

[20] A. Singh, K. Click, R.M. Parizi, Q. Zhang, A. Dehghantanha, K.-K.R.
Choo, Sidechain technologies in blockchain networks: An examination and
state-of-the-art review, J. Netw. Comput. Appl. 149 (2020) 102471.

[21] F.S. Ali, M. Aloqaily, O. Ozkasap, O. Bouachir, Blockchain-assisted decentral-
ized virtual prosumer grouping for P2P energy trading, in: 2020 IEEE 21st
International Symposium on" a World of Wireless, Mobile and Multimedia
Networks"(WoWMoM), IEEE, 2020, pp. 385–390.

[22] S. Popov, The tangle, White Pap. 1 (2018) 3.
[23] W.F. Silvano, R. Marcelino, Iota tangle: A cryptocurrency to communicate

Internet-of-Things data, Future Gener. Comput. Syst. 112 (2020) 307–319.
[24] X. Wang, X. Zha, W. Ni, R.P. Liu, Y.J. Guo, X. Niu, K. Zheng, Survey on

blockchain for Internet of Things, Comput. Commun. 136 (2019) 10–29.
[25] A. Dorri, R. Jurdak, Tree-chain: a fast lightweight consensus algorithm for iot

applications, in: 2020 IEEE 45th Conference on Local Computer Networks (LCN),
IEEE, 2020, pp. 369–372.

[26] A. Dorri, R. Jurdak, Tree-chain: a lightweight consensus algorithm for iot-
based blockchains, in: 2021 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), IEEE, 2021, pp. 1–9.

[27] A. Dorri, F. Luo, S.S. Kanhere, R. Jurdak, Z.Y. Dong, SPB: A secure private
blockchain-based solution for distributed energy trading, IEEE Commun. Mag.
57 (7) (2019) 120–126.

[28] T.H. Hai, E.-N. Huh, Detecting selective forwarding attacks in wireless sensor net-
works using two-hops neighbor knowledge, in: 2008 Seventh IEEE International
Symposium on Network Computing and Applications, IEEE, 2008, pp. 325–331.

[29] TOR project. http://torproject.org/.
[30] Network Simulator (NS3). https://www.nsnam.org/.
[31] Ethereum. https://ethereum.org/en.
[32] Hyperledger Fabric. https://www.hyperledger.org/use/fabric.
13
Ali Dorri is a Research Fellow at Queensland University
of Technology (QUT), Brisbane, Australia. He received his
Ph.D. degree from the University of New South Wales
(UNSW), Sydney, Australia. He was also a Postgraduate
research student at CSIRO, Australia. His core publications
on blockchain for IoT have received tremendous attention
and one of his papers is continuously ranked among the
most downloaded conference papers in IEEE explorer (top
50 and in some months the second rank). Two of his papers
are top-cited in their respective venues. His publications
are cited over 3300 times and Ali has h-index of 18. His
research interest includes blockchain, Internet of Things
(IoT), security and privacy, and distributed system. He has
published over 31 peer-reviewed papers. Ali served on the
organizing committee of SDLT and BCCA and as technical
program committee in 10 conferences including ICBC.

Shailesh Mishra is an incoming Ph.D. candidate at the
School of Computer and Communication Sciences, École
polytechnique fédérale de Lausanne. He has recently com-
pleted his dual-degree (B.Tech+M.Tech) major in the
Department of Electrical Engineering at the Indian Institute
of Technology, Kharagpur. His current research interests
include distributed systems, blockchain and its applications
in IoT, security and data privacy. He is also working towards
making blockchain more usable and scalable.

Raja Jurdak is a Professor of Distributed Systems and
Chair in Applied Data Sciences at Queensland University
of Technology, and Director of the Trusted Networks Lab.
He received the Ph.D. in information and computer science
from the University of California, Irvine. He previously es-
tablished and led the Distributed Sensing Systems Group at
CSIRO’s Data61, where he maintains a visiting scientist role.
His research interests include trust, mobility and energy-
efficiency in networks. Prof. Jurdak has published over
220 peer-reviewed articles and 2 authored books that have
collectively been cited over 10,000 times, with an h-index
of 45. His work on blockchain in IoT is among the most
cited globally in this area. He was an Embark fellow in
2006, an Endeavour Fellow in 2011, and a Eureka prize
finalist in 2019. Prof. Jurdak was TPC chair of IEEE ICBC
2021, serves on the editorial board of Ad Hoc Networks and
Nature Scientific Reports, and has been a visiting academic
at Oxford and MIT. He regularly serves on the organiz-
ing and technical program committees of top international
conferences, including Percom, ICBC, IPSN, WoWMoM, and
ICDCS. He is a conjoint professor with the University of
New South Wales, and a senior member of the IEEE, and a
Distinguished Visitor of the IEEE Computer Society.

http://refhub.elsevier.com/S1570-8705(22)00074-9/sb12
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb12
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb12
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb12
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb12
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb13
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb13
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb13
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb13
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb13
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb14
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb14
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb14
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb14
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb14
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb15
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb15
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb15
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb16
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb16
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb16
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb16
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb16
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb17
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb17
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb17
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb17
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb17
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb18
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb18
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb18
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains72
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains72
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains72
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb20
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb20
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb20
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb20
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb20
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb21
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb21
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb21
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb21
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb21
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb21
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb21
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb22
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb23
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb23
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb23
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb24
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb24
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb24
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb25
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb25
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb25
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb25
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb25
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb26
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb26
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb26
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb26
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb26
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb27
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb27
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb27
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb27
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb27
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb28
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb28
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb28
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb28
http://refhub.elsevier.com/S1570-8705(22)00074-9/sb28
http://torproject.org/
https://www.nsnam.org/
https://ethereum.org/en
https://www.hyperledger.org/use/fabric

	Vericom: A Verification and Communication architecture for IoT-based blockchain
	Introduction
	Motivation
	Contributions
	Paper organization

	On the scalability of blockchain
	Hierarchical methods
	Sharding
	Clustering
	IoTA
	Discussion

	Preliminaries
	Vericom: A verification and communication architecture for IoT-based blockchain
	Overview
	Transmission layer
	Trusted backbone nodes
	Untrusted backbone nodes
	Incentives

	Verification layer

	Evaluation and discussion
	Security and privacy analysis
	Performance evaluation

	Conclusion 
	Declaration of competing interest
	References


