
Distributed Secure Image Regeneration in CyberPhysical
Systems

Thesis to be submitted in partial fulfillment of the

requirements for the degree

of

Dual-degree (B.Tech + M.Tech) in Electrical Engineering
with specialization in Signal Processing and Instrumentation

by

Shailesh Mishra
17EE35014

Under the guidance of

Prof. Sanand Dilip Amita Athalye

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Department of Electrical Engineering

Indian Institute of Technology,

Kharagpur

India - 721302

CERTIFICATE

This is to certify that we have examined the thesis entitled Distributed Secure Im-

age Regeneration in CyberPhysical Systems, submitted by Shailesh Mishra

(Roll Number: 17EE35014) a postgraduate student of Department of Depart-

ment of Electrical Engineering in partial fulfillment for the award of degree of

Dual-degree (B.Tech + M.Tech) in Electrical Engineering with specialization in Sig-

nal Processing and Instrumentation. We hereby accord our approval of it as a study

carried out and presented in a manner required for its acceptance in partial fulfill-

ment for the Post Graduate Degree for which it has been submitted. The thesis has

fulfilled all the requirements as per the regulations of the Institute and has reached

the standard needed for submission.

Supervisor

Department of Department
of Electrical Engineering
Indian Institute of Technology,
Kharagpur

Place: Kharagpur
Date: December 17, 2022

ii

ACKNOWLEDGEMENTS

I would like to thank Prof. Sanand for providing me with this amazing opportunity

to collaborate with him where we have been able to develop a distributed system for

image reconstruction.

I would also like to thank my parents for their constant support, without which it

would have been impossible for me to complete this work.

Shailesh Mishra

IIT Kharagpur

Date: December 17, 2022

iii

ABSTRACT

Cyberphysical Systems (CPSs) have seen wide integration in numerous fields of sci-

ence and technology because of their ability to acquire and process a large number of

data from various sources simultaneously. Among the various types of data processed

by CPSs, image is one of the most prevalent. The standard model of CPSs analyzing

images consists of a raft of sensors obtaining image data and a central entity that

processes the images sent to it by the sensors. Deployment of numerous sensors has

made the cumulative size of the data acquired by sensors, which in turn makes it

extremely difficult for a central entity to manage. In addition, images acquired by

CPSs are privacy-sensitive, which if tampered with, can cause various issues. This

phenomena is very much possible in a centralized architecture where data is sent to

a single entity. Thus, a distributed secure solution is needed to mitigate these issues.

Therefore, in this research work, we propose two distributed frameworks, DI-

RAS and DSITR, for transmitting and regenerating images in a secure and privacy-

preserving manner. Being a distributed system, DIRAS and DSITR solve the issue of

scalability of CPSs. A novel leader-based consensus algorithm has been deployed in

both DIRAS and DSITR to reach consensus among the nodes. DIRAS deploys RPCA

to remove the noise from the transferred image. DIRAS integrates matrix completion

to regenerate images even during the case of packet drops. Since DIRAS does not

deploy public-key infrastructure (PKI), the bandwidth consumed in this framework

is relatively less. However, the absence of encryption makes the packets vulnerable

to being tampered with. DSITR attempts to overcome these issues. DSITR deploys

PKI for secure transmission of images between images which makes it near impossible

to pollute an image. DSITR uses matrix completion extensively so that the monitor

nodes regenerate the image from lesser amount of data. This reduces the bandwidth

consumed considerably. In addition, the architecture of DSITR makes it more eas-

ily deployable than DIRAS. However, the usage of PKI makes DSITR dependent on

certificate authorities for providing valid public keys to the nodes.

Hence, DIRAS and DSITR come with their own benefits and issues. Therefore,

in this report, we describe the architecture of both the models, and present the

implicative results which give a better picture of where these models can be deployed.

Keywords: Cyberphysical System (CPS), Image, Distributed Systems, Matrix Com-

pletion, Image Regeneration, Security, Privacy, Robust Principal Component Analysis

(RPCA), Encryption

iv

Contents

1 Motivation 1

2 Literature Review 4

2.1 Security in CPSs . 4

2.2 Distributed Optimizations . 5

2.3 Image reconstruction . 5

2.4 Secure Image Transmission . 6

3 Background 7

3.1 Robust Principal Component Analysis 7

3.2 Matrix Completion . 8

4 DIRAS: Distributed Image Reconstructor for Adversarial Scenario 9

4.1 Assumptions . 9

4.2 System Architecture . 10

4.2.1 Sensor Nodes . 10

4.2.2 Monitor Nodes . 11

4.2.3 Peer to peer(p2p) network . 11

4.3 Functionality . 12

4.3.1 Monitor Position Assignment 13

4.3.2 Image Acquisition and Splitting 13

4.3.3 Lightweight Random Leader Selection Algorithm 14

4.3.4 Image Regeneration . 15

4.3.5 Improvement in DIRAS: Load Balancing 16

4.4 Limitations in DIRAS . 17

v

5 DSITR: Distributed Secure Image Transmittor and Regenerator 18

5.1 Assumptions . 19

5.2 System Architecture . 19

5.2.1 Sensor Nodes . 19

5.2.2 Monitor Nodes . 20

5.2.3 Sharded peer to peer(p2p) network 20

5.2.4 Admin Node . 21

5.2.5 Certificate Authority (CA) . 21

5.3 Functionality . 21

5.3.1 Monitor Position Assignment 22

5.3.2 Image Acquisition and Splitting 22

5.3.3 Lightweight Random Leader Selection Algorithm 23

5.3.4 Image Regeneration . 23

5.3.5 Inter-shard communication . 24

5.3.6 Load Balancing . 25

6 Implementation 27

6.1 DIRAS . 27

6.1.1 The Communication Network 27

6.1.1.1 Varying Sensor Nodes 28

6.1.1.2 Varying Monitor Nodes 28

6.1.2 The Image Regeneration Framework 29

6.1.2.1 RPCA . 30

6.1.2.2 RPCA and Matrix Completion 30

6.1.3 Load Balancing Analysis . 31

6.1.4 Privacy Analysis . 31

6.2 DSITR . 32

6.2.1 The Communication Network 32

6.2.1.1 Varying Sensor Nodes 32

6.2.1.2 Varying Connections Per Node Per Shard 32

6.2.1.3 Varying Shards . 33

6.2.1.4 Varying Image Size 33

6.2.1.5 Varying Number of Pixels Per Shard 33

6.2.2 The Image Regeneration Framework 33

vi

6.2.3 Load Balancing Analysis . 34

6.2.4 Privacy Analysis . 34

7 Evaluation 35

7.1 Communication Network . 35

7.1.1 DIRAS . 35

7.1.1.1 Varying sensor nodes 35

7.1.1.2 Varying monitor nodes 37

7.1.2 DSITR . 37

7.1.2.1 Varying sensor nodes 38

7.1.2.2 Varying number of connections 38

7.1.2.3 Varying number of shards 40

7.1.2.4 Varying image size 40

7.1.2.5 Varying number of pixels per shard 42

7.2 Image Regeneration Framework . 45

7.2.1 DIRAS . 45

7.2.1.1 RPCA . 45

7.2.1.2 RPCA and matrix completion 45

7.2.2 DSITR . 47

7.3 Load Balancing Analysis . 47

7.4 Privacy Analysis . 48

8 Discussion 53

8.1 Scalability Analysis . 53

8.2 Privacy Analysis . 53

8.3 Security Analysis . 54

8.3.1 False Data Injection Attack 54

8.3.2 Packet Drop Attack . 55

8.3.3 Denial of Service (DoS) Attack 55

9 Conclusion 57

References 58

vii

List of Figures

4.1 High level architecture of DIRAS . 11

4.2 Various steps involved in DIRAS . 12

5.1 High level architecture of DSITR . 20

6.1 Image used for analysis in DIRAS . 29

6.2 Image used for analysis in DSITR . 34

7.1 Variation in packet overhead with change in number of sensor nodes

and comparison with centralized and decentralized models 36

7.2 Variation in delay with change in number of sensor nodes and compar-

ison with centralized and decentralized models 36

7.3 Variation in packet overhead with change in number of monitor nodes 37

7.4 Variation in delay with change in number of monitor nodes 38

7.5 Studying the impact of number of sensor nodes on packet overhead. . 39

7.6 Studying the impact of number of sensor nodes on network delay. . . 39

7.7 Studying the impact of number of connections on packet overhead. . . 40

7.8 Studying the impact of number of connections on network delay. . . . 41

7.9 Studying the impact of number of shards on packet overhead. 41

7.10 Studying the impact of number of shards on network delay. 42

7.11 Studying the impact of image size on packet overhead. 43

7.12 Studying the impact of image size on network delay. 43

7.13 Studying the impact of number of pixels transferred to each shard on

packet overhead. 44

7.14 Studying the impact of number of pixels transferred to each shard on

network delay. 44

7.15 (a) Actual Image (b) Image with noise (c) regenerated image 45

viii

7.16 Performance of DIRAS in case of false data injection and its comparison

with other filters . 46

7.17 Performance of DIRAS in case of packet dropping and false data injection 46

7.18 Image regenerated from: (a) 5000px (b) 10000px (c) 15000px (d) 20000px

(e) 25000px (f) 30000px (g) 35000px (h) 40000px(actual image) . . . 48

7.19 Distance of matrix regenerated with the change in number of pixels

used for matrix completion . 49

7.20 Time taken to regenerate whole matrix from some set of pixels 49

7.21 Impact of inter-shard communication: (a), (b), (c), (d): Image regen-

erated from 10000 pixels; (e) Image obtained after averaging the above

four images; (f) Actual image . 50

7.22 Improvement in the quality of image by inter-shard communication . 51

7.23 Improvement in performance because of load balancing based on the

number of images for which each monitor node has been chosen as the

leader . 51

7.24 Privacy provided by DIRAS based on distance between the actual ma-

trix and the matrix regenerated after applying matrix completion . . 52

8.1 Mitigation of effect of DoS attacks by load balancing 55

ix

Chapter 1

Motivation

Cyberphysical Systems (CPSs) combine physical processes, computational processes

and communications networks aiming to enhance the overall functioning of systems

[8]. CPSs have found great usage in various domains such as power grids, healthcare,

supply chain and various other fields. Another sister technology of CPS is the Internet

of Things (IoT), which connects all the devices over the internet so that the devices

can interact with each other to reach a common goal [7]. Around 20 billion IoT devices

will be connected in 2022, with that number expected to rise to 41 billion by 2025 [30,

21]. Due to the abundance of data acquired by billions of sensors and the cumulative

processing power of the billions of devices, CPS and IoT have revolutionized the way

various systems are handled. Along with the IoT, CPSs have played an integral role

in improving the efficacy of the existing processes.

CPSs and IoT acquire various types of data, process them and take actions ac-

cording to the implications obtained from the processing. CPSs acquire and process

data such as image, audio, temperature, humidity, voltage and many more. Among

all the above-mentioned types of data processed by CPSs, images are one of the most

important due to the abundance of information carried by them. With the recent

advancements in image capturing ability of devices and computer vision [22, 4, 36],

images have become an integral form of data in our lives. Recently, analysis of image

has become a key component for proper functioning of various sectors of society such

as: agriculture [37], medical systems [16], remote sensing [13], robotics [25] and many

other fields. Therefore, image data holds great value in various fields.

However, the generation of terabytes of image data by CPS and IoT has made

the management of data extremely difficult. The sharing and storage of such a huge

amount of data has become a prevalent issue in CPSs, which has been exploited by

1

adversaries extensively. Firstly, in the conventional architecture, CPSs that process

images, deploy a central processing unit. This architecture is not scalable, i.e., the

processing unit won’t be able to handle the increase in number of sensors. With the

steep rise in application of CPS in various domains, this scenario is imminent. Sec-

ondly, if the processing unit fails or is compromised, then the whole framework would

fall. Therefore, there’s the issue of single point of failure. Next, the images, acquired

by the sensors from their surroundings, contain sensitive information. Consider sen-

sors deployed in a hospital or a military base. If compromised, such images can lead

to fatal consequences. Lastly, the communication channel is also vulnerable, i.e., an

adversary can sniff packets from the packets that are being shared between the sensor

and the computing unit which is a classic example of the man in the middle (MITM)

attack [33]. If this attack is successful, then the attacker can easily tamper with the

image. This can lead to false data injection attacks (FDIA) [3]. In another scenario,

an adversary can execute a denial of service (DoS) [27] attack, where the connection

to a specific node is completely blocked by the adversary. Here, the attacker sends

large volumes of data to the victim node, thus preventing any other communication

for the victim node. Therefore, there are numerous issues that exist in the frameworks

that involve communication of images from sensors to computing units.

To overcome the above-mentioned issues, we propose DIRAS, a distributed and

robust solution for reconstructing images in CPSs. DIRAS reconstructs images in a

distributed manner which can be further used for analysis. DIRAS consists of multiple

nodes for computation (which have been called as monitor nodes) that mitigates the

issue of centralization, and thus, the issue of single point of failure. In the case of

DIRAS, the sensors split the images into chunks and distribute it to the sensors.

Splitting of data improves the privacy of data. DIRAS deploys an efficient, random

consensus algorithm along with robust principal component analysis (RPCA) [11]

for image reconstruction, even in the case of false data injection attack. DIRAS

incorporates numerous design schemas to mitigate other various kinds of attacks.

Moreover, DIRAS does not deploy public-key infrastracture (PKI) which makes

it independent of any certificate authorities. This prevents any dependency on third

party. However, by not using encryption and digital signatures, DIRAS becomes

more vulnerable to FDIA. Due to this reason, the final image generated in DIRAS

has higher chances of being polluted. In addition, in the case of DIRAS, a sensor node

is connected to all the monitor nodes. This feature makes the deployment of DIRAS

2

difficult because in a CPS, a sensor is normally a device with quite less computation

power. Therefore, the design of DIRAS needs some improvements to make image

regeneration more feasible and efficient.

To mitigate the issues in image regeneration in DIRAS, we propose DSITR which

incorporates PKI for secure transmission of images. Just like DIRAS, DSITR is

distributed and scalable. To improve the performance of the framework, DSITR

incorporates network sharding. DSITR deploys the same random consensus algorithm

that has been used in DIRAS. Moreover, in case of DSITR, a sensor node is connected

to only a small set of monitor nodes which makes the design more easily deployable.

However, by including PKI, the amount of data that needs to be sent in each packet

increases (each packet would consist of the actual message, the digital signature, and

the hash). This increases the total bandwidth consumed in the whole framework.

Therefore, DIRAS and DSITR provide different merits and demerits.

Overall, DIRAS and DSITR provide novel distributed secure solutions for regen-

erating images. The major contributions of this work are:

1. Two novel distributed frameworks consisting of sensor nodes and monitor nodes

to reconstruct images. One deploys RPCA and matrix completion [24] to im-

prove the robustness of image reconstruction. The other deploys PKI and matrix

completion for image regeneration that makes the overall process more secure.

2. A light-weight, randomized leader selection algorithm for reaching a consensus

among the monitor nodes.

3. An efficient data splitting mechanism by sensors to enhance data privacy and

reducing the overheads.

4. Preliminary results that prove the benefits of using the frameworks

Rest of the report has been organized as follows: Section 2 outlines the relevant re-

search that has been conducted in this field. Section 3 provides necessary background

knowledge for this research. Section 4 elucidates the design of the system, various al-

gorithms used and the mechanisms deployed. Section 6 discusses the implementation

of the developed system. Section 7 describes the results from the implementation

and compares the proposed model with the existing models. Section 8 elaborates on

the implications obtained from the evaluations and the performance of the framework

against various attacks. Section 9 concludes the report.

3

Chapter 2

Literature Review

The works that have been presented in this report span four different research fields

which are: security in CPSs, distributed optimizations, image regeneration and secure

image transmission. Here, we study the existing work that has been done in these

four fields.

2.1 Security in CPSs

Numerous research works have addressed the security issues that exist in CPSs. In

[31], the authors have presented control-theoretic approaches to cyberphysical secu-

rity. First of all, the models of CPS, monitors and attacks have been described. De-

tectability and identifiability of attacks for these models have been defined. Then, they

discuss the detection and identification limitations from system and graph-theoretic

perspectives. They have also discussed monitor design problem and provided a case

study on coordinated attacks against power networks. They have used power sys-

tems networks and water networks as example for study in the paper. In [34], the

authors have proposed two algorithms for state reconstruction from sensor measure-

ments which are corrupted with sparse attack. In [20], malicious state attacks in a

remote state estimation has been considered. Here, a smart sensor node transmits

data to a remote estimator equipped with a false data detector. The authors have

presented an optimal linear deception attack on sensor data where the adversary can

successfully inject data and remain undetected by the false data detector. In [17],

the authors have proposed a technique for exact reconstruction of the discrete state

of a switching system, when only the continuous output is accessible and the discrete

4

output is not available. They have also investigated the scenario where the continu-

ous input and output signal is adulterated by malicious attacks. All these works have

presented formidable solutions for attacks.

2.2 Distributed Optimizations

In [42], the authors elaoborate on various distributed optimization algorithms. In

distributed optimization of multi-agent systems, the agents collaborate with each

other to minimize a global function which is the sum of local objective functions.

In [6], the authors have presented a decentralized technique to solve the equation

Ax = B in the case of network of agents. In [29], the authors have provided an

overview of distributed methods for optimization in networked systems. A distributed

architecture can help to overcome the issues of scalability, single point of failure and

privacy breaches that exist in the case of a centralised model.

In addition, in the field of distributed computing, there are multiple algorithms

that have been proposed to reach consensus. First of all, there is Paxos [26] which

presents an algorithm where a proposer proposes a value and a common value is ac-

cepted by an acceptor. Paxos is used for message sharing where the nodes want to

reach a common point. A recent technology that has also received great attention is

blockchain. Bitcoin [28] is the most famous cryptocurrency and the most widespread

application of blockchain. Bitcoin deploys the Proof-of-Work (PoW) to reach a con-

sensus. Here, the nodes solve a computationally expensive problem to become the

miner. The miner is the node in the blockchain that adds a new block to Bitcoin. Al-

though the application of Paxos and PoW is different, there is one similarity between

these two algorithms. They work on the basis of a leader selection who executes the

main task of maintaining the framework. This idea has also been used in DIRAS and

DSITR to reach a consensus.

2.3 Image reconstruction

Image reconstruction has received great attention recently. It has been used exten-

sively in the field of tomography [40]. Image reconstruction methods are being used

for reconstructing 3D images from various projections of the image. The work done

in [39] discusses proposes machine learning algorithms for image reconstruction in

5

tomography. In [9], the authors have presented the application of deep learning al-

gorithms for fluorescence image reconstruction. The authors in [38] have proposed a

deep learning algorithm for tomographic image reconstruction.

2.4 Secure Image Transmission

Secure image transmission has been studied extensively for long. In [1], the authors

have presented a technique where they have used block-based elliptic curve public

key encryption as the first stage of encryption and then, they have used XOR of

the first stage as the second stage of encryption. The results presented in the work

depict the efficiency of the proposed method. In [2], the authors have proposed a

chaos-based fractal encryption scheme for secure image transmission. On the other

hand, the authors of [5] have proposed a blockchain-based method for secure image

transmission.

All the methods proposed for image reconstruction are executed by powerful ma-

chines (personal computers) at a particular location. The same goes for the solutions

described in the secure image transmission. Such a framework cannot be used in CPS

because the devices are computationally less powerful. DIRAS, the solution that we

have proposed here, considers first of all the security in CPS and tries to mitigate the

effects of attacks. Next, DIRAS is a distributed framework and uses an algorithm

which is inspired from the work in [28]. Moreover, the distributed optimization using

Least Squares Solution, as presented in [29], provides a completely distributed solu-

tion but the solution provided by this is not accurate enough. The matrix generated

after this optimization has each element equal to the element of the actual matrix

divided by the total number of elements (the element will be normalized). Thus, al-

though the system will reach a consensus, the deviation will still be very high. Due to

this reason, we have deployed a leader-based algorithm that helps in reaching consen-

sus quickly and regenerating images fast. DIRAS uses RPCA and matrix completion

as its core component for reconstructing mmatrices. In the next section, we describe

these two technologies.

6

Chapter 3

Background

In this section, we describe the technologies which form an integral part of DIRAS.

Robust Principal Component Analysis has been used for extracting a low-rank matrix

from the matrix that is obtained after collecting the image from other nodes. On the

other hand, matrix completion has been used for solving the issue that arises when an

adversary simply drops packets and does not allow the packet to reach the destination

node. These two algorithms have been elaborated in this section.

3.1 Robust Principal Component Analysis

Robust Principal Component Analysis (RPCA) is the algorithm for obtaining the low

rank matrix and the sparse component of the matrix when the matrix is corrupted

[11, 41]. It is the modification of the long established Principal Component Analysis

(PCA) to make it work even in the case of gross corruption of the data. First of all,

we have defined what is PCA and then, elaborate about RPCA.

Suppose we have a data matrix which is the sum of a low rank matrix and a

sparse matrix. PCA is the method via which we can obtain the low rank matrix

and the sparse component from the data matrix. This is possible only under certain

assumptions and can be achieved by solving a convex optimization problem called

Principal Component Pursuit.

PCA is widely used for data analysis and dimensionality reduction problems. How-

ever, its performance reduces greatly when the data is grossly corrupted1. Therefore,

RPCA has been developed for making the process of PCA robust.

1Gross errors are the ones which are generally large with respect to the data.

7

Many RPCA mechanisms have been proposed in literature using multivariate

trimming [19], alternating minimization [23], and random sampling techniques [18].

However, these algorithms do not provide a polynomial-time complexity and hence,

can be inefficient in case of large matrices. The RPCA described in [11] is the improved

version of the other algorithms and yields the low-rank matrix from a highly corrupted

matrix.

Hence, in the case of DIRAS, we have used the RPCA described in [11] and we

describe the performance of the algorithm in Section 7.

3.2 Matrix Completion

Matrix Completion will be used in DIRAS when RPCA alone will not be able to

provide efficient results. This would occur when multiple packets will be unavailable

for the node that will reconstruct the image. Therefore, matrix completion is a very

important part of DIRAS to improve its security.

In [12], the authors have provided a method for completing a matrix with minimal

entries. They have proposed that nuclear-norm minimization (NNM) subject to data

constraints, which is a convex optimization problem, needs to be solved to complete a

data matrix. Their results prove that matrix completion provides satisfactory output

in case of small noise in the data. The work done by the author in [32] provides a

method to complete matrix by minimizing the nuclear norm of the hidden matrix. In

[24], the authors have presented a method called OptSpace to improve on the work

presented in [12] and [32]. We have also deployed the nuclear-norm minimization

technique for matrix completion. In [35], the authors have proposed alternating

gradient descent (ASD), which is an iterative method for regenerating matrix.

Next, we explain how DIRAS and DSITR have been designed and how these two

technologies mentioned here help in robust image reconstruction.

8

Chapter 4

DIRAS: Distributed Image
Reconstructor for Adversarial
Scenario

In this section, we describe the architecture of DIRAS and the algorithms deployed

in it. DIRAS is a distributed framework for regenerating images, even in the case of

attacks. DIRAS deploys defense mechanisms against false data injection attack, DoS

attack and the scenario where the adversary drops a packet. DIRAS also deploys

image splitting for improving privacy of information. All the features have been

elucidated of DIRAS have been elucidated in this section. First of all, the assumptions

made while designing DIRAS have been described. Next, the components of DIRAS

have been outlined. Then, the various mechanisms and algorithms used in DIRAS

have been explained. Table 4.1 provides the various terminologies used in this section

to describe the various components of DIRAS.

4.1 Assumptions

The essential assumptions made while designing DIRAS are as follows: (i) The pro-

cessing nodes, that regenerate the image, are connected over a peer-to-peer (p2p)

network. In other words, all the processing nodes are connected with each other; (ii)

The p2p network is synchronous; (iii) All the processing nodes are trusted, i.e., a node

that receives data from the monitor does not behave maliciously; (iv) The processing

nodes have enough computational power to run algorithms and regenerate the image;

and (v) Sensors have enough computational power to split matrices.

9

Table 4.1: Definition of the terminologies used

Terminology Definition
Si i− th sensor node
SN Number of sensor nodes
Ii Image generated by i− th sensor node

(xi(Ii), yi(Ii)) Coordinates corresponding to the i− th sen-
sor node for the image Ii

Mj j − th monitor node
MN Number of monitor nodes

(xj, yj) Coordinates corresponding to the j−th mon-
itor node

∆ Epoch time (in seconds)
δ Time (in seconds) a leader waits before re-

generating the image
C(Ii) Set of chunks of the image Ii
Cj(Ii) Chunk of the image Ii sent to the j−th mon-

itor node
Ii ID Identifier of the image generated by the sen-

sor
Mj ID Identifier of the monitor node
L(Ii) Leader for the image Ii
βj Count of the number of images regenerated

by the j − th monitor node

4.2 System Architecture

Here, we discuss the building blocks of DIRAS. Figure 4.1 depicts the high-level

architecture of DIRAS.

4.2.1 Sensor Nodes

These are the part of CPSs that acquire the image data from the surroundings.

After acquisition of images, the sensor nodes split the images into chunks and send it

over to the monitor nodes. Splitting helps in two ways: (i) splitting an image leads

to improved privacy because an adversary cannot acquire enough information from

chunks of an image; (ii) splitting reduces the bandwidth consumption on a particular

communication channel. Furthermore, the sensors can record images from any source

10

Figure 4.1: High level architecture of DIRAS

such as from a factory or a hospital, thus making DIRAS platform independent.

4.2.2 Monitor Nodes

These are the processing units of the CPSs. They are the nodes that receive chunks

of acquired images from the sensors and regenerate the whole images. The images re-

generated by the monitor nodes can be used further for other processing and analysis.

These analyses are beyond the scope of this work.

4.2.3 Peer to peer(p2p) network

The monitor nodes are connected over a p2p network. This is to ensure that any

monitor node can share a packet with any other monitor node. This is a reasonable

assumption because considering the advent of the IoT, most of the processing devices

11

around us are connected to each other. Thus, making such an assumption would not

make a huge difference to the current architecture.

4.3 Functionality

Figure 4.2: Various steps involved in DIRAS

Here, the various design schemas and algorithms used in DIRAS for its functioning,

and making it efficient and robust have been described. Figure 4.2 depicts the various

functionalities involved in DIRAS. First of all, DIRAS is a distributed framework

for regenerating image. Being a distributed system, the monitor nodes in DIRAS

need to reach a consensus for regenerating images efficiently. We do this by using a

12

lightweight consensus algorithm. For each image, a leader is selected randomly who

is responsible for aggregating all the chunks of an image and then, regenerating it.

This design ensures lower overhead and does not overburden any particular monitor

node. The details of this algorithm have been discussed below.

4.3.1 Monitor Position Assignment

This is an important step in the functioning of DIRAS. In this step, the monitor

nodes generate 2-D coordinates (xj, yj) with each coordinate being a (pseudo)random

integer (from now on we refer a psuedorandom number as a random number). (xj, yj)

is generated by the monitor nodes for every epoch time ∆. It should be noted that

the sensor nodes do not know about the coordinates of the monitor nodes. Thus,

changing of the coordinates (xj, yj) appears to be superfluous to the design. In spite

of this, the monitor nodes keep changing the set of coordinates for each ∆. It is so

as to improve the security of DIRAS against DoS attack (explained in the section

8). After generating the coordinates, the monitor nodes broadcast these packets to

all other monitor nodes. The structure of the packet sent by a monitor node is

< Mj ID, (xj, yj) >.

After receiving the packets from all the monitor nodes, the monitor nodes simply

store the coordinates of all other nodes in its memory. The position assignment is an

important step for the leader selection.

4.3.2 Image Acquisition and Splitting

This is the task carried out by the sensors of DIRAS. The sensors acquire images

from their surroundings continuously. After acquiring an image Ii, a sensor generates

a 2-D coordinates (xi(Ii), yi(Ii)) with each of the coordinates being a random number.

The coordinates being a function of I depicts that a sensor node generates unique

coordinates for every image acquired. The image acquired by the monitor will have

the R, G and B components. Thus, the dimension of the acquired image matrix would

be m × n × 3 (where m is the number of rows in the image and n is the number of

columns in the image). Before splitting the image, the R, G and B components are

stacked vertically, i.e., the order of the new matrix becomes - 3m× n. After stacking

the image vertically, a sensor splits the image into chunks row-wise. We have carried

out the splitting row-wise but it can be done column-wise (if done column wise, then

13

the stacked matrix would be m× 3n) or by any other way that can be decided by the

network operator. After splitting the image, the sensor form packets whose structure

is: < Ii ID,Mj ID,Cj(Ii), (xj, yj) >.

All the components of the packet have been explained in Table 4.1. The packet

depicted here is for a single chunk of image sent by the i − th sensor node to the

j − th monitor. After receiving this packet, the monitor nodes select the leader for

the image.

4.3.3 Lightweight Random Leader Selection Algorithm

The most important component in a distributed system is to reach a consensus, i.e.,

all the nodes in the p2p network should be in the same state. This is a challenge in

any distributed system. In the case of DIRAS, we achieve this by selecting a leader

for every image. The leader is selected by using a simple method which has been

described below.

1. Each monitor node finds the distance between the coordinates generated by

every monitor node and the coordinate sent by the sensor node by using the

formula: Dij =
√

(xi − xj)2 + (yi − yj)2.

2. Then, the monitor node evaluate the monitor node in the p2p network that has

the minimum Dij for the image.

3. The one with the minimum Dij is the leader for the image.

4. Every other monitor node sends its Cj(Ii) to the leader and the leader can then

regenerate the image whose structure is < Ii ID,Mj ID,Cj(Ii) >.

The leader selection algorithm is not a new concept in distributed systems. It has

been used extensively in blockchains [28]. In standard blockchains, the leader (which

is called the miner) is chosen on the basis of a cryptographic puzzle. The one who

solves the puzzle becomes the miner of a block and adds a block to the blockchain.

However, the algorithm used in the case of [28] is resource intensive and requires

a lot of time and power. Therefore, we have introduced a lightweight and random

algorithm to select a leader for regenerating an image.

This algorithm appears to be a little centralized with respect to a particular image.

But if we consider a long duration of time, this algorithm is decentralized because

14

the leader is selected on the basis of four random coordinates. Thus, if considered

honest behavior from all the nodes in the network, this algorithm is decentralized.

Another choice would be to design a completely decentralized algorithm where each

monitor node regenerates the image. In this case, after receiving the packet from

the sensor node, each monitor node would broadcast the packet to all other nodes in

the network. However, this mechanism would increase the overheads greatly making

the system very inefficient. Thus, the algorithm in DIRAS, which is distributed with

respect to time, provides an optimal distributed solution. We have compared the

performance of DIRAS with the above-mentioned decentralized model in section 7.

Next, we discuss the regeneration of the image by a monitor node after it receives all

the packet.

4.3.4 Image Regeneration

After receiving the first packet corresponding to an image from a source, each node

starts a timer. This timer is integrated so that a leader does not wait indefinitely for

regenerating an image. Each leader waits for a time δ after receiving the first packet.

After the time δ is over, the leader starts the regeneration process. The leader builds

a matrix whose dimension is 3m×n. Therefore, the leader first breaks the matrix into

3 matrices of size m× n. After this, it has two paths for regeneration: (i) The leader

receives all the packets : In this case, the leader first of all combines all the chunks

and then, applies RPCA to extract the low-rank matrix. The low-rank matrix is

the image that will be used by other systems for analysis; (ii) The leader receives

some of the packets : This means that the packet sent by either the monitor node or

the sensor node gets dropped. In this case, the leader combines all the chunks and

makes the rows equal to zero which it hasn’t received. Then, it applies RPCA on the

matrix that it gets after combining all the rows. The next step is to apply matrix

completion algorithms on the matrix that has been obtained after applying RPCA.

The matrix obtained after matrix completion is the regenerated image that will be

used for further analysis.

This is how the whole image regeneration algorithm works in DIRAS. Next, we

discuss load balancing, a mechanism to improve DIRAS.

15

4.3.5 Improvement in DIRAS: Load Balancing

DIRAS uses a very simple algorithm for selecting the leader which generates the

final image. This algorithm uses random numbers which makes it non-deterministic

and efficient. However, the randomness also distributes the tasks among the monitor

nodes randomly. Therefore, there will be multiple scenarios where one node may

have to regenerate more images than the others. This will induce latency in the

functioning of the network because more traffic will be there at some Mj. To prevent

this scenario, we have added the feature of load balancing to improve DIRAS. The

load balancing algorithm is again a simple yet effective one (we prove is efficacy in

the results). Next, we discuss the load balancing algorithm.

Recall that the leader was chosen based on the algorithm:

L(Ii) = j, s.t. min
j

Dij

where Dij =
√

(xi(Ii) − xj)2 + (yi(Ii) − yj)2, j = 1, ...,MN

, where all the coordinates are random numbers. To mitigate the issue of uneven

load distribution, we have introduced βj, which is the total number of images regen-

erated by a monitor node. For load balancing, all the monitor nodes keep a track of

βj of all the monitor nodes in the network. After the integration of load balancing,

the leader selection algorithm becomes,

L(Ii) = j, s.t. min
j

Fij

Fij = Dij + βj × max
j

Dij

where Dij =
√

(xi(Ii) − xj)2 + (yi(Ii) − yj)2, j = 1, ...,MN

The term βj × max
j

Dij has been added for load balancing. This term ensures

that the monitor nodes, which have regenerated more images already, don’t have to

regenerate the incoming images. Thus, this load balancing algorithm ensures that

the computation burden is distributed evenly.

16

4.4 Limitations in DIRAS

Although DIRAS helps in regenerating images in a distributed manner and reduces

noise in the regenerated image, there are some limitations which make its deployment

less feasible:

1. DIRAS does not use PKI while transferring information from one node to an-

other. Due to this reason, adversaries can acquire whole of the information

carried by a packet. In addition, this makes the image data more vulnerable to

tampering.

2. Moreover, all the sensor nodes in DIRAS need to be connected to all the monitor

nodes. In general, sensor nodes are designed to only acquire data and send it

to the few of their neighbours. Connecting them to hundreds or thousands of

nodes would overburden sensor nodes. This could prove to be detrimental to

the overall functioning of the network. Thus, this property makes it difficult to

deploy DIRAS in the real world scenario.

3. Moreover, in DIRAS, there are some chances of the failure of a leader. This can

lead to the loss of an image. The case of failure of the leader hasn’t been dealt

with in DIRAS.

4. The quality of image regenerated using DIRAS may not be of good quality.

This is because the data is sent row-wise to the nodes. If a packet is dropped,

then nodes lose row(s). In such a scenario, the matrix completion algorithm

does not perform well (presented in the results).

To overcome the above-mentioned limitations in DIRAS, we have designed DSITR,

a sharded network architecture for secure image transmission and regeneration. In

the next chapter, we discuss the design and working of DSITR.

17

Chapter 5

DSITR: Distributed Secure Image
Transmittor and Regenerator

In this section, we describe the architecture and working of DSITR. DSITR aims

to overcome the shortcomings of DIRAS. DSITR incorporates PKI for encrypting

packets transferred in the framework. This ensures that the image data, being trans-

mitted in the network, is not tampered with. In addition, the monitor nodes network

in DSITR is sharded, i.e., the monitor nodes network is fragmented into multiple

parts. The functioning of each shard does not depend on the functioning of another

shard. Each shard regenerates its own image. Due to this reason, there are multiple

replicas of an image in different parts of the network. This is what makes DSITR fault

tolerant. DIRAS has the requirement of a sensor being connected to all the monitor

nodes in the network. As discussed earlier, the could prove to be a major issue while

deploying DIRAS. To overcome this issue, DSITR only needs the sensor nodes to be

connected to a small set of nodes. This makes the architecture conducive to real-world

deployment. In addition to all these differences with respect to DIRAS, DSITR has

many common features with DIRAS. For instance, the sensor nodes split the image

into smaller chunks and then, send it to the various monitor nodes. Chunking of

image ensures that communication channels are not overburdened. Just like DIRAS,

DSITR deploys the same leader selection algorithm and load balancing algorithm. By

including the formidable features of DIRAS and solving the issues of DIRAS, we have

tried to make DSITR a robust and accurate image regenerator. First, we describe the

network architecture of DSITR. Then, we describe the various functionalities of the

model. Table 5.1 provides the various terminologies used in this section to describe

the various components of DIRAS.

18

5.1 Assumptions

The essential assumptions made while designing DSITR are as follows: (i) The pro-

cessing nodes, that regenerate images, are connected over a peer-to-peer (p2p) network

within their shards. In other words, all the processing nodes are divided into sub-

groups and the nodes; (ii) The p2p network is synchronous, i.e., the processing nodes

work according to a global clock; (iii) All the processing nodes are trusted, i.e., a node

that receives data from the monitor does not behave maliciously; (iv) The processing

nodes have enough computational power to run algorithms and reconstruct the im-

age; (v) Sensors have enough computational power to split matrices; and (vi) There

is a trusted certificate authority (CA) that provides public keys and private keys to

the nodes in the network.

5.2 System Architecture

Here, we discuss the architecture of DSITR. Figure 5.1 depicts the high-level archi-

tecture of DSITR for a single sensor node. The diagram shows the architecture for a

single sensor node. A sensor node is connected to all the shards in network, however,

it is connected to only some nodes within each shard. Each shard has a leader which

we call Admin node here. The admin node is the leader of each shard and coordinates

the working of its respective shard. We describe each component of DSITR and also,

discuss how its architecture is different from DIRAS.

5.2.1 Sensor Nodes

These nodes play the same role as the sensor nodes in the case of DIRAS. They

acquire images, split them into chunks and send the chunks to the monitor nodes.

The difference between the sensor nodes in DIRAS and DSITR lies in the way they

are connected to the monitor nodes. In the case of DIRAS, a sensor node was con-

nected to all the monitor nodes. On the other hand, in case of DSITR, a sensor

node is connected only to a small set of monitor nodes. It does increase the amount

of information carried by a packet, thus making a packet more vulnerable to infor-

mation leakage. To mitigate this issue, we have incorporated data encryption, that

makes it near impossible for an adversary to draw any relevant information from the

19

Figure 5.1: High level architecture of DSITR

packets being transferred in the network. We discuss this more thoroughly in the

functionalities subsection.

5.2.2 Monitor Nodes

These nodes are the same as the monitor nodes in the case of DIRAS. They receive

chunks from the sensors and regenerate the whole image. The difference in this

architecture is the way these nodes are connected with each other and the flow of

information in their network. We discuss this thoroughly in this section.

5.2.3 Sharded peer to peer(p2p) network

The monitor nodes are connected over a sharded p2p network. The reason for in-

corporating sharding within the framework is to improve the fault tolerance of the

framework. Each shard regenerates its own version of image. Thus, even if a large

section of network fails, images are regenerated by the network. Within each shard,

the monitor nodes are connected over a p2p network. This again makes the design

20

of DSITR better because the monitor nodes need not be connected to a large set of

nodes, which was the case in DIRAS.

5.2.4 Admin Node

Admin nodes are the leaders of each shard. Admin nodes are responsible for coordi-

nating all the nodes within a shard and resolving any possible dispute. Admin nodes

acquire the final image regenerated within their shard and share it with the admin of

other shards to obtain the final image that is going to be used for further analysis.

Admin nodes play a key role in the functioning of the overall framework. In addition,

to this admin node, there are 2 other monitor nodes in each shard, which can play

the role of an admin, in case of any failure.

5.2.5 Certificate Authority (CA)

Certificate Authority (CA) are bodies that provide public keys and private keys to

the nodes in DSITR. Unless signed by the CA, a key is not considered valid. The

CA plays a key role in the security aspect of DSITR because encryption forms the

baseline for the functioning of DSITR.

Next, we discuss the working of DSITR.

5.3 Functionality

Here, the various design schemas and algorithms used in DSITR for its functioning

have been described. Figure 4.2 depicts the various functionalities involved in DSITR.

Just like DIRAS, DSITR is a distributed framework for transmitting image data

securely and then, regenerating the whole image. DSITR uses the same lightweight

consensus algorithm which was used in the case of DIRAS, where a leader is selected

for each image. To reduce the bandwidth being consumed in the framework, we rely

on matrix completion. DSITR works on the principle that the whole of the image

data need not be transferred by the sensor to obtain relevant information. In other

words, DSITR uses the concept of approximate computing to regenerate the image

from some part of the whole image data. This does not provide the exact image but it

does provide enough accuracy for functioning of the framework. In addition, DSITR

deploys PKI for encryption and digital signature. This conceals the actual image

21

data and also gets rid of the requirement of an algorithm for removing noise such as

RPCA in the case DIRAS. The details of each step have been explained below. We

have not explained the design features of DSITR that overlap with DIRAS, which

otherwise would have made the report verbose.

5.3.1 Monitor Position Assignment

Just like DIRAS, this is an important step in the functioning of DSITR. The purpose

of this step and its working is exactly same as that in the case of DIRAS. The only

difference lies in the fact that the monitor nodes encrypt the coordinates, digitally

sign their message, and broadcast the coordinates only to the nodes within their

shard. After generating the coordinates, the monitor nodes encrypt the message us-

ing the receiver’s public key and then, sign the message using their private key. On

receiving a packet, a monitor node first verifies if the message is from the appro-

priate user. After verifying the signature, the monitor node decrypts the message

to obtain the coordinates. The structure of the packet sent by a monitor node is

< Mk
j ID, en(xj, yj), Sign,Hash, TS >. Just like DIRAS, the position assignment,

in the case of DSITR, is an important step for the leader selection.

5.3.2 Image Acquisition and Splitting

This is the task carried out by the sensors of DSITR. Again, just like the monitor

position assignment step, this step in DSITR is similar to the corresponding step in

DIRAS. There are four subtle differences between DIRAS and DSITR in this step.

1. The first difference is that the DSITR is designed for black and white image

as of now, while DIRAS has been designed for colorful images. This has been

done so that we can obtain better performances in image regeneration.

2. The second is the use of encryption and digital signature while sending out

packets to the monitor nodes.

3. The third difference is in the way the image is broken into small chunks. In

the case of DIRAS, the image was split into chunks row-wise and the rows were

sent to the monitor nodes. In this scenario, if any packets were dropped, then

the quality of image regenerated was of poor quality. Therefore, in the case

of DSITR, the pixels of an image are picked randomly, and then sent to the

22

monitor nodes. Since the elements are randomly picked, the index of the pixel

is also sent along with the pixel. This increases the packet overhead slightly.

4. The fourth and the most major difference lies in the fact that a sensor node needs

to send only some part of the image data to the monitor node network. This

mitigates the effect of bandwidth consumption due to the inclusion coordinates

of the pixels and thus, reduces the packet overhead to some extent.

After splitting the image, a sensor forms packets whose structure is:

< Ii ID,Mk
j ID, en(Cj(Ii)), en((xj, yj)), Sign,Hash, TS >

All the components of the packet have been explained in Table 5.1. The packet

depicted here is for a single chunk of image sent by the i − th sensor node to the

j − th monitor of the k − th shard. After receiving this packet, the monitor nodes

select the leader for the image.

5.3.3 Lightweight Random Leader Selection Algorithm

This algorithm is exactly same as that in the case of DIRAS. The only difference

lies in the fact that the monitor nodes need to verify the signature and decrypt the

message in the packet. Therefore, next we discuss the image regeneration mechanism

used in DSITR which is quite different from the method used in DIRAS.

5.3.4 Image Regeneration

Just like DIRAS, after receiving a packet from a source, each node starts a timer so

that a leader does not have to wait indefinitely for regenerating an image. It should

be noted that the leader node would get the packets from only the monitor nodes of

its own shard. After receiving the elements and their respective indices, the leader

node begins the regenerating process. After time δ, the leader node applies matrix

completion to obtain the pixels of the image that haven’t been sent by the sensor to the

shard. A leader applies nuclear norm minimization for obtaining the completed matrix

of the image. However, when the image size is large, nuclear norm minimization takes

a lot of time for optimization and in some cases, may not even regenerate image after

tens of minutes. This is because nuclear norm minimization requires a node to solve

a convex optimization problem which makes it time consuming for large matrices.

23

For such scenarios, the nodes will need iterative methods like alternating steepest

descent (ASD) algorithm for matrix completion. ASD can handle larger images with

larger number of pixels. Therefore, DSITR can shift to ASD in case of larger images.

DSITR offers two choices to the sensor nodes - (i) flexible image size, where the

monitor nodes need to switch between NNM and ASD based on the image size; (ii)

hardwired image size where the nodes have been programmed to use either NNM or

ASD all the time. This design choice has been left for the network designer. After

image regeneration using matrix completion, the leader nodes send the image to the

admin for further improvement in image quality.

5.3.5 Inter-shard communication

This is the final step and can be used based on the type of image being dealt with in

the framework. This step is for improving the quality of final image that has to be

used for further processing or analysis. After regenerating an image, the leader sends

the regenerated image to the admin of the shard in which the leader is present. After

receiving the image from the leader monitor node, the admin node finds the admin

that is going to be the leader for the final image. The admin nodes use the same

leader selection algorithm as they have the coordinate of the sensor node that has

generated the image and their own set of coordinates which they generated during

the monitor position assignment phase. After receiving all the RIki , the leader among

the admin nodes during the inter-shard communication regenerates the final image

using the formula:

Final Imagei =

∑SHN
k=1 RIki
SHN

By averaging over all the images being regenerated in the framework, the quality

of final image gets better. We prove the benefit of this in the section 7. It should

be also noted that this step involves consumption of extra bandwidth. Therefore, if

a framework does not require high accuracy, then the system designer can remove

this step. There is a chance that the leader monitor node changes the coordinates to

cause DoS attack within this inter-shard communication. To counter this scenario,

load balancing can be integrated with the inter-shard communication as well. This

would ensure that none of the admin node is overburdened.

24

5.3.6 Load Balancing

DSITR deploys the same load balancing algorithm to improve its working. In addition

to using load balancing for selecting leaders for regenerating images, DSITR uses load

balancing for inter-shard communication as well. This ensures that the none of the

node’s channel is bloated. If a monitor node is found to be sending packets to the

nodes which are not leaders, then this issue is mentioned to the admin node so that

the point of adversarial activity can be detected.

In the next section, we elaborate on the implementation of DIRAS and DSITR so

as to evaluate its performance.

25

Table 5.1: Definition of the terminologies used

Terminology Definition
Si i− th sensor node
SN Number of sensor nodes
Ii Image generated by i− th sensor node

(xi(Ii), yi(Ii)) Coordinates corresponding to the i− th sen-
sor node for the image Ii

Ak Admin node of the k − th shard
SHN Number of shards in the framework
Mk

j j − th monitor node of the k − th shard

MN Number of monitor nodes in a shard
ϕk
i Number of monitor nodes to which i − th

sensor node is connected in the k − th shard
(xk

j , y
k
j) Coordinates corresponding to the j−th mon-

itor node of the k − th shard
∆ Epoch time (in seconds)
δ Time (in seconds) a leader waits before re-

generating the image
C(Ii) Set of chunks of the image Ii
Ck

j (Ii) Chunk of the image Ii sent to the j−th mon-
itor node of the k − th shard

Ii ID Identifier of the image generated by the sen-
sor

Si ID Identifier of the i − th sensor. In the case
of DSITR, identifier of a sensor node is its
public key

Mk
j ID Identifier of the j − th monitor node of the

k−th shard. In the case of DSITR, identifier
of a monitor node is its public key

P Number of pixels sent to each shard
Lk(Ii) Leader for the image Ii in the k − th shard
RIki Regenerated version of Ii in the k− th shard
βk
j Count of the number of images reconstructed

by the j − th monitor node
en(m) Encryption of message m
Sign Digital Signature of the corresponding mes-

sage in the packet
Hash Hash of the message in the packet
TS Timestamp at which the packet is sent

26

Chapter 6

Implementation

In this section, we describe the implementation of both the systems. For each of

them, we have separated the implementation of the system into four parts: (i) com-

munication network; (ii) image regeneration framework; (iii) load balancing analysis;

and (iv) privacy analysis.

6.1 DIRAS

First of all, we discuss the implementation of DIRAS.

6.1.1 The Communication Network

DIRAS involves sharing of data among monitor nodes and transfer of packets from

sensor nodes to the monitor nodes. Therefore, there’s a communication network

established. The first implementation is done so as to study the scalability of the

network, i.e., the performance of the network when the number of sensor nodes and

monitor nodes increase. This implementation was done on ns-3 network simula-

tor. First of all, the sensor nodes and monitor nodes were created in the simulator.

The monitor-monitor and sensor-monitor connections are established. Then, moni-

tor nodes transfer packets to each other for completing the step of monitor position

assignment. Then, the sensor nodes generate images (each node generates five im-

ages), split the image into chunks and send the chunks to the respective monitor

nodes. Lastly, monitor nodes find the leader and send the chunks to the leader. After

developing the code for this, the simulator was run for two variations in the network.

27

6.1.1.1 Varying Sensor Nodes

In this case, we study the performance of DIRAS with the variation in number of

sensors in the network. Here, we have also studied the performance of DIRAS with

respect to the standard network architectures:

1. Centralized model: There is only one monitor node (server) and the sensor nodes

send the whole image to a server. The centralized architecture is inspired from

the conventional client-server architecture of network systems.

2. Decentralized model: Here, there are multiple monitor nodes and all the monitor

nodes regenerate all the images. This model is inspired from the architecture

used in distributed optimization [29]. However, there isn’t any optimization

running on any node. The decentralization implies that all the monitor nodes

regenerate all the images. In this framework, a sensor node splits an image

into chunks and send the chunks to the respective monitor nodes. The monitor

nodes, then, broadcast their chunk to all other monitor nodes to ensure that all

the monitor nodes regenerate the image.

The centralized and decentralized models are classical models which form the

extreme cases of network systems. On one hand, the centralized model has less

overheads but is prone to single point of failure. On the other hand, the decentralized

framework has higher overheads but is fault-tolerant. DIRAS falls in the sweet spot

of these two extreme cases and aims to provide low overheads and fault-tolerance.

The simulations for this part of implementation have been run with the following

parameters: MN = 1 for centralized model, and MN = 10 for decentralized model

and DIRAS; SN = n, where n ={10, 15, 25, 40, 50, 75, 100, 125, 150, 175, 200,

225, 250, 300 }; dimension(Ii) = 100 × 100 × 3; and number of images generated by

each sensor = 5.

6.1.1.2 Varying Monitor Nodes

Here, we study the effect of increasing the number of monitor nodes in DIRAS.

The simulations for this part of implementation have been run with the following

parameters: MN = n; where n ={10, 20, 30, 40, 50, 60, 70, 80, 90, 100 }; SN = 100;

dimension(Ii) = 100× 100× 3; and number of images generated by each sensor = 5.

28

Figure 6.1: Image used for analysis in DIRAS

We have studied the packet overhead and network delay induced in the network

because of the increase in monitor nodes. Recall that a sensor chunks an image

according to the number of monitor nodes in the network. Thus, the packet overhead

and the latency will increase with the increase in monitor which isn’t appropriate for

a CPS. However, it should be noted that an increase in chunks implies a decrease in

the information carried by a chunk. Thus, the privacy of data is improved, i.e, if an

adversary is able to intercept a chunk, then the adversary would be able to acquire

less information when the number of monitor nodes is high. Thus, there is a trade-off

between privacy and overheads. Due to this reason, we have also studied quality of

privacy provided by DIRAS and quantified it.

It should be noted that there is no step in this implementation where the image

of a sensor is polluted. Therefore, in this part of the implementation, we do not

intend to study the image regeneration. Rather we wish to obtain the performance

of the network in terms of a communication framework because the implementation

described here exactly emulates the packet transfer mechanism as described in the

system design. Therefore, this part of the implementation furnishes us with the study

of the overheads and delays in the network due to the communication and processing

except the regeneration part.

6.1.2 The Image Regeneration Framework

Since DIRAS aims at regenerating images, it is necessary to study the efficiency of

DIRAS in regards to the ability to generate accurate images. In this implementation,

we have studied this parameter of performance.

29

6.1.2.1 RPCA

In the first part of this implementation, we consider only false data injection attack,

and there is no packet drop attack. This implementation has been done in python-

3.8.8 using the NumPy module. We have used the image depicted in figure 6.1

(which is a 200 × 200 × 3 matrix), and then, introduce random sparse noise into

it. The image with the induced noise is the image that is obtained after the leader

obtains all the chunks from all other monitors. The false data injected is a matrix

with random entries. The entries of the noise matrix had a maximum value set for its

entries. We increased the maximum value of this error and evaluated the performance

of the image regeneration algorithm. Thus, we have emulated the scenario where an

adversary adds random noise to any chunk. After obtaining the noisy image, we

apply RPCA to it to reduce the sparse noise. This gives us an idea of the degree

of noise our regeneration method can handle. In this study, we have analyzed the

performance of RPCA with respect to various image processing denoising algorithms

which include: (i) mean blur; (ii) median blur; (iii) Gaussian blur; (iv) bilateral Filter

[10]; and (v) Wiener filter[14]. We have studied the performance of the algorithms

using the following formula: Dist = E(Mregenerated − Mactual), where E(M) is the

Euclidean norm of matrix M, Mregenerated is the regenerated matrix after applying

the denoising algorithm, and Mactual is the actual matrix (the matrix obtained from

the figure 6.1). We calculated this for R, G and B components of the image (DistR,

DistG and DistB). Finally, the distance between the actual and regenerated image

is:

Distance =

√
Dist2R + Dist2G + Dist2B

3

6.1.2.2 RPCA and Matrix Completion

Next, we study the performance of our algorithm in the case where an adversary

drops an packet, i.e., the leader does not receive all the packets of a particular image,

and noise is also added to the image.. In this case, the leader tries to regenerate the

image by using matrix completion algorithm. This part of the implementation has

also been done in python-3.8.8 using the NumPy and cvxpy modules. To start with

this implementation, we used the image in figure 6.1. Next, we add some random

noise to the image. This random noise is same as the one described above. Then, we

30

randomly remove some rows of the image. Note that by doing this, we have emulated

the exact attack scenario - where an adversary is in the middle of a monitor and a

sensor or in the middle of two monitors, and the attacker simply acts as a sink by not

allowing the packet to pass to the receiving monitor. If the leader does not receive

all the packets corresponding to an image in δ, the leader assumes that the packet

has been dropped. First of all, the leader makes all the elements equal to zero for

the rows it hasn’t received. Then, it applies RPCA to remove the noise from the

image. In the final step, the leader applies matrix completion algorithm to obtain

the rows of the image that it hasn’t received. This implementation helps us to study

the efficiency of our image regeneration algorithm in case of the combined attack of

addition of false data injection and dropping of packets.

6.1.3 Load Balancing Analysis

Here, we study the performance of the load balancing analysis proposed here. Here, we

study the improvement in the leader selection algorithm. Firstly, the normal leader

selection algorithm (without the load balancing) was implemented for 10 monitor

nodes and 1000 images, i.e., we studied which node is decided as the leader based

on the leader selection algorithm for each image. Then, we calculated how many

times each monitor node acts as the leader. Next, we implement the leader selection

algorithm using the load balancing and evaluate the number of times each node has

to act as the leader. This implementation was also done in python-3.8.8 and gives an

understanding of the improvement provided by the load balancing algorithm.

6.1.4 Privacy Analysis

Here, we have analyzed the privacy provided by DIRAS. DIRAS deploys splitting

of images into chunks, which ensures that an attacker cannot acquire a substantial

amount of information if the attacker is able to read packets of a communication

channel. Therefore, here, we study the variation of amount of information obtained

by an adversary with the number of rows of the matrix intercepted. We vary the

number of rows of the matrix obtained by the attacker and make the other rows of

the matrix equal to zero. Then, we apply matrix completion to obtain the whole

matrix from the intercepted rows. From here, we get an understanding of the amount

of information revealed by chunks of image. This amount of information revealed is

31

obtained using the Euclidean norm of the matrix obtained by the difference of the

actual matrix and the matrix obtained after matrix completion.

Next, we will discuss the implementation of DSITR.

6.2 DSITR

6.2.1 The Communication Network

Just like DIRAS, DSITR has numerous interactions over the network. Due to this

reason, we need to study the performance of DSITR with the change in number of

network parameters. The network parameters include: (i) no. of sensor nodes; (ii)

no. of nodes to which a sensor node is connected in a shard; (iii) no. of shards; (iv)

size image; (v) no. pixels sent to each shard. Just like DIRAS, the networking part

of DSITR has been built using ns-3 network simulator. We also integrated CryptoPP

with ns-3 to implement encryption and digital signature. We have not compared

the performance of DSITR with any other classical model because of its difference

from any classical model. We varied various parameters to obtain the performance of

DSITR. Consider the table 5.1 while considering the parameters for this subsection.

6.2.1.1 Varying Sensor Nodes

Here, we vary the number of sensor nodes and keep the rest of the parameters the

same. The parameters chosen for this simulation are as follows: SHN = 4, MN = 50,

ϕk = 4, dimension(Ii) = 200 × 200, P = 15000 and SN is varied as:

[10, 15, 20, 25, 40, 50, 75, 100]

6.2.1.2 Varying Connections Per Node Per Shard

Here, we vary the number of monitor nodes to which a sensor node is connected to

per shard and keep the rest of the parameters the same. The parameters chosen for

this simulation are as follows: SHN = 4, MN = 100, SN = 50, dimension(Ii) =

200 × 200, P = 15000 and ϕk is varied as:

[1, 2, 3, 4, 5, 6, 10, 15, 20, 25, 30, 40, 50]

32

6.2.1.3 Varying Shards

Here, we have varied the number of shards and the number of monitor nodes per

shard in a way that the total number of monitor nodes in the framework remains

constant at 200. The parameters chosen for this simulation are as follows: SN = 50,

ϕk = 4, dimension(Ii) = 200 × 200, P = 15000 and SHN is varied as:

[1, 2, 4, 5, 8, 10, 20, 25]

and, MN = 200/SHN.

6.2.1.4 Varying Image Size

Here, we have varied the image size and the number of pixels sent to each shard,

keeping rest of the components the same. The parameters chosen for this simula-

tion are as follows: SHN = 4, MN = 50, SN = 50, ϕk = 4, P = 15000, ϕk,

dimension(Ii) = n× n, where n is varied as:

[25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500]

, and P = 0.4 × dimension(Ii).

6.2.1.5 Varying Number of Pixels Per Shard

Here, we have varied only the number of pixels per shard. The parameters cho-

sen for this simulation are as follows: SHN = 4, MN = 50, SN = 50, ϕk = 4,

dimension(Ii) = 200 × 200, P is varied from 2000 to 4000 with a jump of 2000.

6.2.2 The Image Regeneration Framework

Next, we study the image regeneration framework in DSITR. Here, there is almost

no chance of image getting tampered with by an adversary. Thus, we only study how

well the image regeneration works with lesser amount of data and how well it can

handle the scenario of packet drop. We have also studied the improvement in the

image quality after the inter-admin communication. Just like DIRAs, we have used

the figure 6.2 for testing:

33

Figure 6.2: Image used for analysis in DSITR

6.2.3 Load Balancing Analysis

The load balancing analysis for DIRAS and DSITR are exactly the same. Therefore,

we have implemented this part only once and depicted the result in one place.

6.2.4 Privacy Analysis

The privacy analysis for DIRAS and DSITR are very similar. Therefore, we have

implemented this part only and depicted the result in one place.

These implementations help to study the scalability and ability of DIRAS and

DSITR to regenerate images in case of adversarial activities. The implications ob-

tained from the implementations have been discussed in the next section.

34

Chapter 7

Evaluation

In this section, we explain the results that we have obtained from the implementation.

7.1 Communication Network

Here, we describe the performance of network component of DIRAS and DSITR.

7.1.1 DIRAS

7.1.1.1 Varying sensor nodes

Here, we vary the number of sensor nodes keeping the number of monitor nodes

constant (refer to 6.1.1.1).

Figure 7.1 depicts the packet overhead in centralized model, DIRAS and decentral-

ized model. Packet overhead depicts the bandwidth consumed by the whole network.

As the graph suggests, the packet overhead in the case of decentralized model is

very high with respect to the other two, which makes it unsuitable for deployment.

Centralized model has the least packet overhead because it doesn’t involve any inter-

monitor communication (as there is only one monitor node). DIRAS has a packet

overhead which is not much higher than the the centralized model.

Figure 7.2 depicts the delay in centralized model, DIRAS and decentralized model.

Delay depicts the delay in transmission of packets in the network. The x-axis depicts

the number of sensor nodes deployed and the y-axis is the delay in the network. As

the graph suggests, the delay in the case of decentralized model is much higher than

the other two, which makes it unsuitable for deployment in CPS. Centralized model

has the least network delay because it involves only transmission of packets from

35

sensors to a single server. DIRAS has a network delay which is not much higher than

the the centralized model.

Figure 7.1: Variation in packet overhead with change in number of sensor nodes and
comparison with centralized and decentralized models

Figure 7.2: Variation in delay with change in number of sensor nodes and comparison
with centralized and decentralized models

As the figures 7.1 and 7.2 suggest, DIRAS falls in between the centralized and

decentralized models in terms of the performance of the network system.

36

7.1.1.2 Varying monitor nodes

Here, we vary the number of monitor nodes keeping the number of sensor nodes

constant (refer to 6.1.1.2).

Figure 7.3 and figure 7.4 depict the packet overhead and network delay in DIRAS

with the increase in number of monitor nodes. With the increase in number of

monitor nodes, the overhead and delay will also increase and the major increase in

the overheads and the delay will be due to the monitor position assignment because

the total number of images generated in the network is constant. Thus, as expected,

the graphs depict that the overhead and delay increase with increase in the monitor

nodes. However, it should be noted that when the number of monitor nodes becomes

ten-fold, the packet overhead and the network delay doesn’t increase that greatly

which is depicted by the lower slopes of the lines. Thus, increasing the number of

monitor nodes doesn’t greatly affect the performance of the network component. On

the other hand, the increase in monitor nodes is beneficial for the network in terms

of privacy (this has been discussed later).

Figure 7.3: Variation in packet overhead with change in number of monitor nodes

7.1.2 DSITR

In the case of DSITR, we have not compared its working with any of the model because

of its difference from classical models. Therefore, in this section, we only study the

37

Figure 7.4: Variation in delay with change in number of monitor nodes

variation of various quantities by changing various parameters in the framework.

7.1.2.1 Varying sensor nodes

First of all, we vary the number of sensor nodes in the framework by keeping every

other parameter constant.

Figure 7.5 and figure 7.6 depict the packet overhead and network delay in DSITR

with the increase in number of sensor nodes respectively. As the figure suggests,

the packet overhead increases gradually as the number of sensors increase in the

framework. It should be noted that overheads in case of DSITR is much larger than

that in the case of DIRAS. This was expected because incorporating encryption and

increasing the number of replication increases the overheads. On the other hand, the

latency does not vary that greatly from that in the case of DIRAS.

7.1.2.2 Varying number of connections

Here, we vary the number of monitor nodes (per shard) to which a single sensor node

connected to in the framework and we keep every other parameter constant.

Figure 7.7 and figure 7.8 depict the packet overhead and network delay in DSITR

with the increase in number of connections made per shard respectively. There is one

interesting pattern here. Until 2 connections per shard, the overhead and latency are

38

Figure 7.5: Studying the impact of number of sensor nodes on packet overhead.

Figure 7.6: Studying the impact of number of sensor nodes on network delay.

39

Figure 7.7: Studying the impact of number of connections on packet overhead.

pretty low. But at 3 connections per shard, there is a steep jump in the overhead and

latency. After 3 connections, the increase in overheads and latency is very gradual.

7.1.2.3 Varying number of shards

Here, we vary the number of shards and the number of monitor nodes per shards and

we keep every other parameter constant. We have varied those parameters in a way

that the total number of monitor nodes in the framework remains constant.

Figure 7.9 and figure 7.10 depict the packet overhead and network delay in DSITR

with the increase in number of shards respectively. As the graph suggests, the packet

overhead and network delay increase as the number of shards increase in the frame-

work. This is obvious because the number of connections per shard is constant.

Therefore, as the number of shards increase, the number of replicas of the image re-

generated in the framework increase. Thus, there is an increase in both the quantities.

7.1.2.4 Varying image size

Here, we vary the number of pixels in an image acquired by a sensor and we keep

every other parameter constant. The number of pixels transferred to each shard is

0.4 times the number of pixels in an acquired image.

40

Figure 7.8: Studying the impact of number of connections on network delay.

Figure 7.9: Studying the impact of number of shards on packet overhead.

41

Figure 7.10: Studying the impact of number of shards on network delay.

Figure 7.7 and figure 7.8 depict the packet overhead and network delay in DIRAS

with the increase in number of pixels in an image. As the graph suggests, with the

increase in number of pixels, the packet overhead and network delay increase. One

peculiar behavior was observed here. Until 40000 pixels (200 rows and 200 columns),

the overhead and latency is almost constant. This behavior is because of the values

that we have chosen for the simulation.

7.1.2.5 Varying number of pixels per shard

Here, we vary the number of pixels sent to each shard and we keep every other

parameter constant.

Figure 7.13 and figure 7.14 depict the packet overhead and network delay in DIRAS

with the increase in number of pixels transferred to each shard respectively. As

expected, both the quantities increase with the increase in number of pixels being

transferred. We can again observe a peculiar behavior here. Until half the image size,

i.e., 20000 pixels, the increase in packet overhead and latency is almost negligible.

After 20000 pixels, the overhead and latency increases rapidly. This behavior can be

again attributed to the values that have been chosen for the simulation.

42

Figure 7.11: Studying the impact of image size on packet overhead.

Figure 7.12: Studying the impact of image size on network delay.

43

Figure 7.13: Studying the impact of number of pixels transferred to each shard on
packet overhead.

Figure 7.14: Studying the impact of number of pixels transferred to each shard on
network delay.

44

7.2 Image Regeneration Framework

Here, we study the performance of the image regeneration component of DIRAS AND

DSITR.

7.2.1 DIRAS

7.2.1.1 RPCA

Figure 7.15 depicts the actual image, image with the noise and the image regenerated

from the noisy image after applying RPCA. As the figure depicts, RPCA removes

the noise to a great extent. However, there is a certain degree of blurring in the

regenerated image. Therefore, RPCA does not preserve all the features of the image.

One reason for this inefficiency is the image that has been used not being a low-rank

matrix.

(a) (b) (c)

Figure 7.15: (a) Actual Image (b) Image with noise (c) regenerated image

Figure 7.16 depicts the performance of RPCA with the increase in magnitude

of the noise being added to the image. We have also compared the performance of

RPCA with other standard filters. The Euclidean distance between the actual image

and the regenerated image reduces as the error is increased. Thus, all the filters

perform better as the magnitude of error increases and RPCA performs better than

all of them. However, the regenerated image obtained from all the filters vary greatly

from the actual image.

7.2.1.2 RPCA and matrix completion

Figure 7.17 depicts the performance of DIRAS in case of packet drop and false data

injection. As expected, the Euclidean distance of the regenerated image and the

45

Figure 7.16: Performance of DIRAS in case of false data injection and its comparison
with other filters

regenerated image increases with the increase in number of packets dropped. As the

graph suggests, there is a small saturation in the Euclidean distance after 85 rows of

the matrix have been dropped.

Figure 7.17: Performance of DIRAS in case of packet dropping and false data injection

46

7.2.2 DSITR

Next, we discuss the performance of DSITR in case of image regeneration.

Figure 7.18 depicts the performance of DSITR in terms of quality of image regen-

erated with the number of pixels used for regenerating the image. Here, we have used

NNM for matrix completion. It can be seen that the image regenerated using 25000

pixels is very close to the actual image. Thus, our concept of using less amount of

data for obtaining the near-actual data works efficiently as depicted in the figures.

Figure 7.19 depicts the distance of regenerated matrix with the change in number

of pixels used for regenerating the entire image. As it can be seen, the distance

between the actual matrix and the regenerated matrix is very small for number of

pixels 15000. We have also compared the performance of ASD and NNM. As expected,

NNM provides a more accurate matrix than ASD. However, ASD is faster than NNM

in execution. This is depicted by the figure 7.20 where we can see that ASD is always

faster than NNM.

Figure 7.21 depicts the impact of inter-shard communication for improving the

final image quality. It is evident that the quality of image increases considerably

when the regenerated images are averaged over. By averaging, DSITR removes the

deviations that lie in individual images.

Next, we quantify the improvement achieved by averaging in terms of distance

between the actual matrix and regenerated matrix. As depicted by figure 7.22, the

distance between the matrices reduces on averaging. It should be also noted that

averaging has more in case of lesser number of pixels than in the case of greater

number of pixels.

7.3 Load Balancing Analysis

Figure 7.23 depicts the improvement provided by load balancing. Without the load

balancing, some monitors have less computation burden while the others have more.

On the other hand, the load balancing algorithm ensures that each of monitor has

equal computation burden in terms of regenerating a whole image.

47

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7.18: Image regenerated from: (a) 5000px (b) 10000px (c) 15000px (d) 20000px
(e) 25000px (f) 30000px (g) 35000px (h) 40000px(actual image)

7.4 Privacy Analysis

Figure 7.24 depicts the amount of information revealed with the number of packets

intercepted. It is evident that the Euclidean distance between the actual regenerated

matrix from matrix completion and the actual matrix is quite large when the num-

48

Figure 7.19: Distance of matrix regenerated with the change in number of pixels used
for matrix completion

Figure 7.20: Time taken to regenerate whole matrix from some set of pixels

49

(a) (b)

(c) (d)

(e) (f)

Figure 7.21: Impact of inter-shard communication: (a), (b), (c), (d): Image regener-
ated from 10000 pixels; (e) Image obtained after averaging the above four images; (f)
Actual image

50

Figure 7.22: Improvement in the quality of image by inter-shard communication

Figure 7.23: Improvement in performance because of load balancing based on the
number of images for which each monitor node has been chosen as the leader

ber of rows intercepted is very small. An adversary does not have a great deal of

information until he has intercepted around 500 rows. Thus, DIRAS is resistant to

privacy leakage as an attacker would have to get control over numerous channels to

get substantial information about the image.

51

Figure 7.24: Privacy provided by DIRAS based on distance between the actual matrix
and the matrix regenerated after applying matrix completion

52

Chapter 8

Discussion

In this section, we discuss the various implications provided by the results in Section

7. We have classified this discussion into scalability, privacy and security of DIRAS

and DSITR.

8.1 Scalability Analysis

As results suggest, the overhead and network delay in DIRAS is comparable with the

centralized model. Considering the benefits provided by DIRAS in terms of privacy

and security, DIRAS can prove to be a better choice over a centralized architecture.

In addition, splitting of data helps in enhancing the scalability of the framework.

This is because a sensor node does not have to transfer its entire image, which is

generally a large matrix. Such transfer of large matrices would not only bloat the

connections of the sensor node but also they will make the communications between

monitor nodes slower.

On the other hand, the magnitude of overheads and latency for the same of number

of sensor nodes is higher in case of DSITR as compared to DIRAS. However, this is

compensated by the security provided by it.

8.2 Privacy Analysis

Splitting of messages has helped us in increasing the privacy of the data. Figure 7.24

suggests that an attacker needs to acquire a large number of rows to gain enough infor-

mation of an image. The Euclidean norm of the matrix obtained from the difference

between the reconstructed and actual matrices is around 90 for 400 rows intercepted.

53

This is difficult for an adversary to achieve. For example, consider a scenario each

chunk sent by the sensor has 5 rows. Then, the adversary would need to intercept

packets from 80 communication channels, which is very difficult computationally.

Another point that should be noted is the trade-off between bandwidth and pri-

vacy. Figure 7.3 and figure 7.4 depict that the bandwidth consumed and delay increase

with the increase in the number of monitor nodes. However, with the increase in num-

ber of monitor nodes, the size of chunks reduces and thus, the information revealed

by each chunk reduces. Thus, the network designer needs to decide the decide the

number of monitor nodes based on the requirement of privacy.

Moreover, we have assumed that the adversary uses the same technique used by us

for matrix completion. The attacker may use a better matrix completion algorithm

for acquiring the entire image.

DSITR provides a very high level of privacy because of encryption. Due to en-

cryption, it is nearly impossible for an adversary to acquire any information from the

image. Even if we consider the worst case, where the adversary gets the keys of a

node, even then it is difficult to acquire enough information because of data splitting.

8.3 Security Analysis

Here, we discuss the various attacks DIRAS defends against and how.

8.3.1 False Data Injection Attack

In this case, the adversary is in between two nodes and tampers with the data within

the packet. Note that the adversary can be between a sensor node and a monitor

node or two monitor nodes. The adversary changes the data such that the image

reconstructed deviates greatly which leads further wrong analysis. We have mitigated

the effects of this attack by deploying RPCA that separates the sparse noise from the

low-rank matrix. However, as the results depict, the reconstructed matrix has a great

deal of blurring and thus, the reconstructed image varies greatly from the actual

image. Thus, we may need to improve the algorithm or look for new methods for the

same.

This attack is impossible in DSITR.

54

Figure 8.1: Mitigation of effect of DoS attacks by load balancing

8.3.2 Packet Drop Attack

In case of this attack, the attacker is between any two nodes and does not allow

packets to pass from source node to destination. We call this the Packet Drop Attack.

In the case of this attack, the whole image cannot be reconstructed which is really

detrimental to the functioning of the systems. DIRAS reduces the effect of this attack

by deploying matrix completion algorithm which helps greatly.

By changing the way data is sent in the network, i.e., by sending random pixels

instead of rows of an image, DSITR has achieved much better performance than

DIRAS. Even if an adversary drops some packets, the monitor node would still receive

randomly distributed data points which would lead to better image regeneration than

DIRAS.

8.3.3 Denial of Service (DoS) Attack

This attack is targeted at any particular monitor node. An adversary takes control

of a sensor node and generates coordinates which are always close to (xj, yj). The

j − th monitor node will be selected as the leader each time. Therefore, the j − th

monitor node will be sent numerous packets in a very short interval of time and will

be blocked from all other communications and functioning. Note that the adversary

does not need to know the exact coordinates of a monitor. It can simply keep on

55

generating coordinates which are close to (xj, yj). To reduce the effect of this attack,

the monitor nodes generate random coordinates for every ∆. This reduces the chances

of this attack greatly. However, the attacker may generate images at an extremely

quick rate in a given epoch time. To solve this issue, we have proposed load balancing

for selecting the leader each image. Figure 8.1 depicts how load balancing helps

in countering DoS attack. The attacker sensor generates coordinates very close to

monitor with ID M − 3. Without load balancing, M − 3 has to regenerate all the

images. By integrating load balancing, the image reconstruction task is distributed

evenly in the network and none of the nodes get blocked.

DIRAS and DSITR are distributed, scalable, and improve privacy and security.

DIRAS is more scalable in the sense that it consumes lesser overhead. On the other

hand, DSITR provides better security and privacy because of encryption. The usage

of digital signature makes the chances of Sybil attacks[15] almost negligible. However,

there is a dependency on third party in case of DSITR which is the CA. To remove

this dependency, we may need to build identity schema within the framework. Thus,

with minor changes, DIRAS and DSITR can be made deployable.

56

Chapter 9

Conclusion

This report presents two models for regenerating image in a distributed manner.

DIRAS does not use PKI which makes it independent of any certificate authorities.

This does bring in some security issues which make the image regeneration erroneous.

However, the overheads and latency in case of DIRAS is not very different from the

centralized model because of the less amount of information that needs to be sent in

each packet.

On the other hand, DSITR tries to overcome the shortcomings of DIRAS by

incorporating network sharding and PKI. The main benefit of using DSITR over using

DIRAS is the improvement in the quality of the image regenerated. The design of

DSITR is relatively more complex than that of DIRAS. In addition, DSITR consumes

more overhead than DIRAS. However, it provides benefits over DIRAS in case of

security and which make it a reliable.

Both the models have their benefits and limitations. The results presented in

Section 7 show the scalability of DIRAS and DSITR, and their ability to regenerate

images. The discussion provided in Section 8 gives a comprehensive view on the

implications obtained from the results and the privacy and security analysis of DIRAS

and DSITR. In spite of the minor limitations that are there in the systems, both of

the systems provide a formidable framework for regenerating image in a distributed

manner. DIRAS and DSITR take into account the features of image regeneration and

security of network and data in their own way, which makes both of them versatile

frameworks for CPS.

57

Bibliography

[1] R. I. Abdelfatah. Secure image transmission using chaotic-enhanced elliptic curve

cryptography. IEEE Access, 8:3875–3890, 2019.

[2] S. Agarwal. Secure image transmission using fractal and 2d-chaotic map. Journal

of Imaging, 4(1):17, 2018.

[3] M. Ahmed and A.-S. K. Pathan. False data injection attack (fdia): an overview

and new metrics for fair evaluation of its countermeasure. Complex Adaptive

Systems Modeling, 8(1):1–14, 2020.

[4] A. Al-Kaff, D. Martin, F. Garcia, A. de la Escalera, and J. M. Armingol. Survey

of computer vision algorithms and applications for unmanned aerial vehicles.

Expert Systems with Applications, 92:447–463, 2018.

[5] B. A. Alqaralleh, T. Vaiyapuri, V. S. Parvathy, D. Gupta, A. Khanna, and

K. Shankar. Blockchain-assisted secure image transmission and diagnosis model

on internet of medical things environment. Personal and ubiquitous computing,

pages 1–11, 2021.

[6] B. Anderson, S. Mou, A. S. Morse, and U. Helmke. Decentralized gradient

algorithm for solution of a linear equation. arXiv preprint arXiv:1509.04538,

2015.

[7] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Computer

networks, 54(15):2787–2805, 2010.

[8] R. Baheti and H. Gill. Cyber-physical systems. The impact of control technology,

12(1):161–166, 2011.

58

[9] C. Belthangady and L. A. Royer. Applications, promises, and pitfalls of deep

learning for fluorescence image reconstruction. Nature methods, 16(12):1215–

1225, 2019.

[10] A. Buades, B. Coll, and J.-M. Morel. A review of image denoising algorithms,

with a new one. Multiscale modeling & simulation, 4(2):490–530, 2005.

[11] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis?

Journal of the ACM (JACM), 58(3):1–37, 2011.

[12] E. J. Candes and Y. Plan. Matrix completion with noise. Proceedings of the

IEEE, 98(6):925–936, 2010.

[13] C.-h. Chen. Signal and image processing for remote sensing. CRC press, 2012.

[14] J. Chen, J. Benesty, Y. Huang, and S. Doclo. New insights into the noise reduc-

tion wiener filter. IEEE Transactions on audio, speech, and language processing,

14(4):1218–1234, 2006.

[15] J. R. Douceur. The sybil attack. In International workshop on peer-to-peer

systems, pages 251–260. Springer, 2002.

[16] G. Dougherty. Digital image processing for medical applications. Cambridge

University Press, 2009.

[17] G. Fiore, E. De Santis, and M. D. Di Benedetto. Secure mode distinguisha-

bility for switching systems subject to sparse attacks. IFAC-PapersOnLine,

50(1):9361–9366, 2017.

[18] M. A. Fischler and R. C. Bolles. A paradigm for model fitting with applications

to image analysis and automated cartography (reprinted in readings in computer

vision, ed. ma fischler,”. Comm. ACM, 24(6):381–395, 1981.

[19] R. Gnanadesikan and J. R. Kettenring. Robust estimates, residuals, and outlier

detection with multiresponse data. Biometrics, pages 81–124, 1972.

[20] Z. Guo, D. Shi, K. H. Johansson, and L. Shi. Optimal linear cyber-attack on

remote state estimation. IEEE Transactions on Control of Network Systems,

4(1):4–13, 2016.

59

[21] H. Jaidka, N. Sharma, and R. Singh. Evolution of iot to iiot: Applications &

challenges. In Proceedings of the International Conference on Innovative Com-

puting & Communications (ICICC), 2020.

[22] C. Kanellakis and G. Nikolakopoulos. Survey on computer vision for uavs:

Current developments and trends. Journal of Intelligent & Robotic Systems,

87(1):141–168, 2017.

[23] Q. Ke and T. Kanade. Robust l/sub 1/norm factorization in the presence of

outliers and missing data by alternative convex programming. In 2005 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’05), volume 1, pages 739–746. IEEE, 2005.

[24] R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few entries.

IEEE transactions on information theory, 56(6):2980–2998, 2010.

[25] P. R. G. Kurka and A. A. D. Salazar. Applications of image processing in robotics

and instrumentation. Mechanical Systems and Signal Processing, 124:142–169,

2019.

[26] L. Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[27] L. Liang, K. Zheng, Q. Sheng, and X. Huang. A denial of service attack method

for an iot system. In 2016 8th international conference on Information Technol-

ogy in Medicine and Education (ITME), pages 360–364. IEEE, 2016.

[28] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized

Business Review, page 21260, 2008.

[29] A. Nedić and J. Liu. Distributed optimization for control. Annual Review of

Control, Robotics, and Autonomous Systems, 1:77–103, 2018.

[30] H. Nguyen-An, T. Silverston, T. Yamazaki, and T. Miyoshi. Generating iot

traffic in smart home environment. In 2020 IEEE 17th Annual Consumer Com-

munications & Networking Conference (CCNC), pages 1–2. IEEE, 2020.

[31] F. Pasqualetti, F. Dorfler, and F. Bullo. Control-theoretic methods for cyber-

physical security: Geometric principles for optimal cross-layer resilient control

systems. IEEE Control Systems Magazine, 35(1):110–127, 2015.

60

[32] B. Recht. A simpler approach to matrix completion. Journal of Machine Learning

Research, 12(12), 2011.

[33] G. Rong-xiao, T. Ji-wei, W. Bu-hong, and S. Fu-te. Cyber-physical attack threats

analysis for uavs from cps perspective. In 2020 International Conference on

Computer Engineering and Application (ICCEA), pages 259–263. IEEE, 2020.

[34] Y. Shoukry and P. Tabuada. Event-triggered state observers for sparse sensor

noise/attacks. IEEE Transactions on Automatic Control, 61(8):2079–2091, 2015.

[35] J. Tanner and K. Wei. Low rank matrix completion by alternating steepest

descent methods. Applied and Computational Harmonic Analysis, 40(2):417–

429, 2016.

[36] J. Thevenot, M. B. López, and A. Hadid. A survey on computer vision for

assistive medical diagnosis from faces. IEEE journal of biomedical and health

informatics, 22(5):1497–1511, 2017.

[37] A. Vibhute and S. K. Bodhe. Applications of image processing in agriculture: a

survey. International Journal of Computer Applications, 52(2), 2012.

[38] G. Wang, J. C. Ye, and B. De Man. Deep learning for tomographic image

reconstruction. Nature Machine Intelligence, 2(12):737–748, 2020.

[39] G. Wang, J. C. Ye, K. Mueller, and J. A. Fessler. Image reconstruction is a new

frontier of machine learning. IEEE transactions on medical imaging, 37(6):1289–

1296, 2018.

[40] W. Wei, B. Zhou, D. Po lap, and M. Woźniak. A regional adaptive variational

pde model for computed tomography image reconstruction. Pattern Recognition,

92:64–81, 2019.

[41] J. Wright, A. Ganesh, S. R. Rao, Y. Peng, and Y. Ma. Robust principal com-

ponent analysis: Exact recovery of corrupted low-rank matrices via convex opti-

mization. In NIPS, volume 58, pages 289–298, 2009.

[42] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin,

and K. H. Johansson. A survey of distributed optimization. Annual Reviews in

Control, 47:278–305, 2019.

61

