
Chat2Code: A Chatbot for Model Specification and
Code Generation, The Case of Smart Contracts

Ilham Qasse1∗, Shailesh Mishra2∗, Björn Þór Jónsson1, Foutse Khomh3, Mohammad Hamdaqa1 3

1Department of Computer Science, Reykjavik University, Reykjavik, Iceland
2School of Computer and Communication Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

3Department of Computer and Software Engineering, Polytechnique Montreal, Montreal, Canada
1{ilham20,bjorn,mhamdaqa}@ru.is, 2shailesh.mishra@epfl.ch, 3{foutse.khomh,mhamdaqa}@polymtl.ca

Abstract—The potential of automatic code generation through
Model-Driven Engineering (MDE) frameworks has yet to be
realized. Beyond their ability to help software professionals write
more accurate, reusable code, MDE frameworks could make
programming accessible for a new class of domain experts.
However, domain experts have been slow to embrace these tools,
as they still need to learn how to specify their applications’
requirements using the concrete syntax (i.e., textual or graphical)
of the new and unified domain-specific language. Conversational
interfaces (chatbots) could smooth the learning process and offer
a more interactive way for domain experts to specify their appli-
cation requirements and generate the desired code. If integrated
with MDE frameworks, chatbots may offer domain experts
with richer domain vocabulary without sacrificing the power of
agnosticism that unified modelling frameworks provide. In this
paper, we discuss the challenges of integrating chatbots within
MDE frameworks and then examine a specific application: the
auto-generation of smart contract code based on conversational
syntax. We demonstrate how this can be done and evaluate
our approach by conducting a user experience survey to assess
the usability and functionality of the chatbot framework. The
paper concludes by drawing attention to the potential benefits of
leveraging Language Models (LLMs) in this context.

Index Terms—Model-driven Engineering, Automatic Code
Generation, Chatbots, Smart Contracts, Blockchain, Natural
Language Processing

I. INTRODUCTION

Model-Driven Engineering (MDE) accelerates the develop-

ment of complex software by raising its abstraction level [1].

One main application for MDE is automatic code generation

from system designs [2]. This usage has drawn attention be-

cause it produces more accurate, reusable and less error-prone,

code that is easier to maintain than manually written code [2].

Over the past two decades, many researchers [3, 4, 5, 6, 7, 8]

have successfully used MDE to build frameworks for auto-

generating code and applications in domain-specific fields like

the Internet of Things, smart contracts, mobile applications,

etc. Most MDE-based tools and development frameworks use

textual or graphical interfaces as the concrete syntax for the

developed languages. This makes it easy for domain experts

to specify models, as it uses concepts they already know.

However, this isn’t as helpful for domain experts, for at least

three reasons. First, they need to learn both the interfaces

*These authors contributed equally to this work

and the underlying syntax of the newly introduced languages

[9, 10]. Second, these interfaces provide delayed feedback

to the user, if any. This frustrates new non-technical users

and makes them quickly abandon the frameworks [9, 10].

Finally, while many of the MDE development frameworks try

to bridge the gap between the different software development

stakeholders, interaction and collaboration between them are

normally limited to providing them with different interfaces,

not introducing mechanisms to facilitate active interaction and

collaboration[9, 10]. In this paper, we demonstrate how these

problems may be circumvented using intent-based chatbots

(conversational interfaces) as a concrete syntax for domain-

specific languages. This syntax can facilitate the specification

of domain models, and auto-generate code from these models.
A chatbot is a software application that uses Natural Lan-

guage (NL) conversation to conduct conversations (online

chat) with users [11, 12]. Chatbots are common information-

gathering interfaces. There are several advantages in using

them as a concrete syntax or a layer on top of a domain-

specific language: (i) the interactive NL interface eases the

learning curve, particularly for users with limited knowledge

of the exact notations and representations of the concrete syn-

tax of domain-specific languages, compared to other modelling

tools (e.g. deployed within eclipse) [9, 10], and (ii) they better

suited for collaboration between different stakeholders, since

they emulate natural interactions.
To show the feasibility of our approach we implement a

chatbot framework, to design and develop smart contract codes

from an existing smart contracts reference meta-model. To

summarize the most salient contributions of our research, we:

1) investigate the usage of chatbots as a concrete syntax

layer for modelling frameworks.

2) propose an approach to integrate chatbots in model-driven

engineering frameworks to support generating code from

chat conversations.

3) provide a running example from the domain of smart

contracts, in which we extended, iContractML, a domain

specific language (DSL) to support conversational model

specification.

4) evaluate the chatbot based on real-world case studies.

5) conduct user experience study to evaluate the functional-

ity and usability of the chatbot framework.

50

2023 IEEE International Conference on Software Services Engineering (SSE)

979-8-3503-4075-4/23/$31.00 ©2023 IEEE
DOI 10.1109/SSE60056.2023.00018

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Se
rv

ic
es

 E
ng

in
ee

rin
g

(S
SE

) |
 9

79
-8

-3
50

3-
40

75
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SS
E6

00
56

.2
02

3.
00

01
8

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 14,2023 at 14:53:53 UTC from IEEE Xplore. Restrictions apply.

6) discuss the impact of advances in LLMs on the future of

integrating MDE and chatbots.

The paper is organized as follows: Section II presents a

motivation and running example. Section III describes the

research methods for Chat2Code. Section IV demonstrates the

case study implementation. Section V presents an evaluation

of the paper’s contributions. Threats to validity are presented

in Sections VI. Related work is covered in Section VII. Finally,

future research directions and conclusion are presented in

Sections VIII and IX respectively.

II. MOTIVATION AND RUNNING EXAMPLE

To highlight the challenges and benefits of utilizing chatbots

with MDE to enable code generation from chat conversation,

in this paper, we start from a domain-specific modelling

language (DSML) and extend it with a conversation-based

layer. As a running example, we use a DSML developed for

smart contracts called iContractML [5].

iContractML is a unified modelling and development lan-

guage for smart contracts (i.e., computer code deployed in

blockchain to enforce agreements when conditions are met [13,

14, 15]). iContractML supports the “model once and deploy

everywhere” approach that enables smart contract creators

to deploy their contracts into multiple blockchain platforms.

First, the contractual agreement needs to be understood by

domain experts with limited coding knowledge, who prefer

to use the terminologies they are familiar with. Second,

the agreement is normally negotiated between the different

contractual parties, and hence it requires an approach that

supports capturing the collective intelligence [16].

Figure 1 shows a sample of a smart contract model built

using iContractML. Using the iContractML code generator,

this model can be transformed into code deployed into multiple

blockchain platforms [5]. However, the graphical interface of

iContractML is not interactive and provides latent feedback

that might be difficult to understand for a new user of

the framework. The iContractML users are still required to

familiarize themselves with the language syntax and seman-

tics. Furthermore, the framework users are limited to using

the terminologies defined in the unified reference model of

iContractML. For instance, iContractML defines the members

of a smart contract as participants, the user may prefer to

use role, struct, or party depending on the user’s background.

These obstacles might affect the usability of the framework. To

enhance the usability of the framework, it is still necessary to

make the interaction with it clear and understandable. It should

also provide clarity about the working of smart contracts.

Chatbots could make this goal attainable by allowing users to

use less restrictive language with a wider range of vocabulary

and by leveraging a guided interactive conversation with the

user. Nevertheless, users may use incomplete or incorrect input

in their conversations when using chatbots. Hence, the chatbot

should be able to detect and correct the user input when

possible, to generate correct model specifications.

Auto-generating code from a chat involves challenging

steps, which include chatbot development, integration with the

Issuer

Verifier

Accept Certificate

Create Certificate

Reject Certificate

[]

[]

[]

Certificate
- Hash
- Verifiers
- Verified

Fig. 1: Example use case modelled using iContractML.

existing meta-model, and natural language processing. In this

paper, we will study the feasibility of integrating chatbots in

MDE development to generate smart contracts. We will focus

on defining the required steps to achieve this goal in the form

of a prototype wiring framework.

III. CHAT2CODE OVERVIEW

The main goal of this paper is to demonstrate an approach

for using chat conversations to generate code. To achieve

this, we are following a model-based approach. Given a

model-driven development framework that can be used to

generate code from models, the goal is to extend it to sup-

port conversational model specification. This is a multi-part

challenge. The information-gathering flow of the chatbot must

conform to the meta-model/abstract syntax of the modelling

framework, which is discussed in Section III-A. Then NL

input must be transformed through that chatbot to an instance

model specification that can be used to generate code as

output. We approach the conformance problem by constructing

an intermediate layer between the meta-model and chatbot

enabling the two to be reciprocally mapped. We solve the NL

translation to a model instance using a 5-step transformation

process described in Section III-B.

A. Defining Chatbot Specifications

The approach for structuring Chat2Code consists of two

main steps: constructing an intermediate layer that ensures

meta-model conformity, and defining chatbot intent flow to

gather instance model specifications. In general, these two

steps are done by an expert (technical user) manually, to ensure

that the created chatbot does not have errors.

1) Generating Intermediate Layer: We start by extracting

the concepts of the language (vocabulary and taxonomy) which

are captured by the meta-model/abstract syntax. Based on

those concepts, we define a set of synonyms that describe

natural language representations of concepts in an intermediate

layer, between the abstract and concrete syntax. We also

identify natural language synonyms in that layer for attributes

from the meta-model and possible operations that can be

51

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 14,2023 at 14:53:53 UTC from IEEE Xplore. Restrictions apply.

applied to both concepts and attributes. Then we generate sets

of training sentences for each concept and operation that can

be used to capture user intent. This intermediate layer serves

to link the abstract syntax with the conversational syntax,

identifying how the elements are related, and mapping them

to each other.

2) Chatbot Intent Flow: Since we are targeting domain

experts, we need to direct them to articulate the concepts

required to specify the models efficiently. For this reason, the

chatbot conversation flow must conform tightly to meta-model

concepts. Conversation flow must also capture potential ac-

tions commonly used to interact with the meta-model. We have

used a statechart, as shown in Figure 2, to represent the intent

flow underlying this process. Each concept is represented as a

state, with subsequent states representing CRUD operations

(create, read, update and delete) that might be required in

the user-chatbot conversation. These operations describe user

interface conventions that facilitate viewing, searching, and

changing the model’s information through chat commands.

The create operation is to create a model instance from the

meta-model, while the operations read, update and delete

queries of an existing instance model. In the case of model

instance query, as shown in Figure 2, the chatbot makes sure

that the concept exists before reading, updating, or deleting a

concept. If the concept doesn’t exist the chatbot notifies the

user. Rules can be enforced in the statechart to ensure that

the flow is correct, and over several cycles, a complete model

can be extracted from the user conversation. For instance, in

creating a model instance the chatbot makes sure that the user

has specified all the requirements for the model and notifies the

user of the missing requirements. With the specification of this

intent flow, and on the basis of entities and training sentences

based on the intermediate layer, a chatbot can be implemented

to gather information from the user that ultimately maps to

the smart contract meta-model through the intermediate layer,

allowing for auto-generating smart contract code.

B. Generating Model Specification

This section specifies the process for taking NL input

from the user to generate instance model specifications and

corresponding code. Figure 3 demonstrates our approach to

generating codes from NL input. It involves the five steps

described in the following.

1) Input Sanitization: Users frequently provide incomplete

or incorrect input when using conversational agents or NL

interfaces, especially domain experts. In this paper, we use a

simple sanitization component that utilizes edit distance and

the list of predefined concepts from the intermediate layer to

support autocorrection of user input. Edit distance infers the

number of changes that would need to be made to String A

so that it becomes equal to String B. We use the Levenshtein

Distance algorithm [17] to modify NL input based on similar

existing data and confirm those modifications with the user.

Handling this kind of deviation and correction in the early

stages of our process provides support for users, guiding them

to correctly specify the model.

2) NLP Component: The primary role of the NLP com-

ponent is to detect and identify user intentions from their

input. User input consists of noun phrases and verb phrases.

The NLP component uses rule-based grammar matching and

machine learning matching to identify user expressions from

the input. This component includes text input acquisition, text

understanding, and knowledge extraction using syntactic and

semantic analysis. The syntactic analysis includes defining the

structure of the user expression based on grammatical analysis

and generating labeled text as nouns, verbs, and adjectives.

The semantic analysis rids the labeled text from structural

ambiguity, lexical ambiguity, or both. We can compare the

resultant ambiguity-free labeled text to predefined training

phrases for all intents to identify the required intent. Noun

phrases can be divided into regular and proper nouns. Regular

nouns can be matched to the predefined intent entities, while

the proper nouns can be the names (identifiers) of these

entities. Verb phrases define the context and the current state

of the intent flow.

3) DSL Model Construction: This step uses the second

layer discussed in Section III-A1 to map user input to the

model concepts. The output is a DSL (instance model) repre-

senting user intention mapped to the meta-model concepts. The

DSL follows a modular attribute–value pairs data structure,

where it assigns the concepts of the meta-model to the user

input for that concept. This enables switching between the

defined concepts, and makes it possible to query, update or

even delete the defined model more flexibly and accessibly.

Moreover, the constructed DSL enables tracing the instance

model or generated code to the use case defined in the user

conversation.

4) Model Validation: The user intent captured by NLP

is validated against a set of rules, which are based on the

requirements of the abstract syntax of the meta-model. These

form the criteria that user input must satisfy to complete

the instance model specification with the minimum required

information to run the model transformation and generate

code.

5) Code Generation: The code generation component de-

fines the set of rules to transform a DSL instance model

into the targeted programming language that conforms to the

correct syntax of the target platform. Transformation templates

are used to specify the rules to automatically transform the

constructed DSL instance model based on model-to-text trans-

formation into code.

IV. IMPLEMENTATION

Having illustrated our general approach to integrating chat-

bots with MDE frameworks, we turn next to the demon-

stration of an implementation of this approach using smart

contract development as a case study. All the source code

for implementing the chatbot for smart contracts (including

the transformation template, etc) are provided in the project

repository 1.

1https://zenodo.org/record/7391855

52

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 14,2023 at 14:53:53 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Chatbot intent flow

Fig. 3: Generation of model specifications and code from

conversational input.

A. Smart Contracts Meta-model

In this paper, we have adopted the meta-model of iCon-

tractML [5]. iContractML is a platform-independent reference

model for smart contract design and development. The pro-

posed smart contract reference model includes (Contract) a

business logic with a name and a target platform. The target

platform implies the language in which the smart contract code

will be generated. The framework presented here enables a

user to generate code in three languages - Solidity, Hyper-

ledger Composer and Microsoft Azure. The contract consists

of three elements, which are asset, participant, and transaction.

Assets are tangible or intangible goods (e.g, money, real estate,

or vehicles) stored in the blockchain. Participants are contrac-

tual parties with certain access rules (conditions) to execute

transactions (actions) to change the state of the assets. The

elements in the smart contract are connected via relationships.
Relationships connect a transaction to either a participant or

an asset. Thus, the framework allows the creation of various

relationships in transactions.

B. Chatbot Implementation
In this paper, we adopted Xatkit [18] as the bot frame-

work to build the conversational bot and to detect the user

input. Xatkit [18] is an open-source framework that helps

capture user intent and understand advanced natural language.

The framework empowers building platform-independent chat-

bots [18]. Xatkit is built on Java programming language,

making it a suitable fit to integrate with modelling frameworks

built on top of the Eclipse modelling framework. The Xatkit

framework enables the deployment of the bot on multiple

platforms, including web pages and social media platforms.

In this paper, we have used the React platform to deploy our

chatbot on a web page. On the chatbot web page, we introduce

the main components of the smart contract with examples

to help users interact with the chatbot. Moreover, within the

chat, we explain these components briefly to the user. This

53

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 14,2023 at 14:53:53 UTC from IEEE Xplore. Restrictions apply.

is to assist people with limited knowledge of smart contract

development to complete their tasks.

During the creation of the chatbot model, errors can emerge

at three points: (i) while the chatbot switches between two

elements; (ii) while the chatbot detects the actions and intents;

and (iii) from the user’s end while giving inputs. We address

these failure points using several techniques, including input

sanitization and validation.

C. DialogFlow for Intent Detection and Entity Extraction

In the case of intent detection and entity extraction, Xatkit

performs well up to a certain extent, but to enhance the

chatbot’s performance, DialogFlow [19] has been integrated.

By using DialogFlow, the chatbot can understand the nu-

merous variants of the test sentences, which improves entity

detection significantly. Dialogflow uses rule-based grammar

matching [19] to detect user intent. It compares user input

to the predefined training sentences for all intents to identify

the best matching intent. Although Dialogflow improves the

intent detection module, it cannot detect phrases where the

user should provide meaningful sentences. For example, if

the user wants to create a contract when the chatbot asks

what they like to create, then the input should be “Create
a contract” or “I want to create a contract”, not only “A
contract”. Thus, a user must elaborate while instructing the

chatbot at each instance. If enough information is not provided,

then the chatbot may generate incorrect code (for instance if

a user wants to create a contract and does not include the

word create or any of its synonyms, the chatbot may end up

considering an intent to edit an element) or the user will not

be able to complete building the desired use case.

D. Input Sanitization

While editing, deleting, and reading elements, the user must

specify the entity name. If the user makes mistakes during

this process, the chatbot will not be able to detect user intent

correctly. As mentioned in Section III-B, we used Leven-

shtein Distance [17] to find the most similar string. Dynamic

programming is used to implement the Levenshtein Distance

algorithm, which is better optimized than a recursive approach.

When a user asks to edit, delete, or read an element, the

chatbot obtains the edit distance between the entity extracted

and all predefined entities. After finding the closest string, the

chatbot modifies the input and confirms the modification with

the user. This process is also applied to the data type of the

parameters. This ensures that the model instance generated is

valid and the chatbot does not break during the code generation

process (since we have predefined datatypes in the metamodel,

a misspelled datatype would make the model invalid). This

extra step makes the chat flow tedious but ensures accurate

model editing.

E. DSL Model Instance Construction

The extracted sanitized intents are stored as an attribute-

value pair intermediate model. Each pair represents concepts

from the iContractML meta-model and the corresponding user

Listing 1: Snapshot of the DSL model instance structure.

1 Contract: ’contract name’
2 Platform: ’target platform’
3 Participant {
4 Name: ’participant name’
5 List: Participant_List_None_0
6 Parameter {
7 Name: ’parameter name’
8 Type: ’parameter type’
9 Identifier: ’True or false’
10 }
11
12 }

input from the conversation. Listing 1 shows a snapshot of the

DSL model instance structure.

A visitor pattern traverses the intermediate model and

generates a model instance that conforms to the iContractML

meta-model syntax.

1) Model Validation: To ensure the validity of the model

instance created by the user, we have implemented a set of

validation rules in our framework. Examples of the validation

rules are:

• A target platform must be specified.

• A contract name must be specified.

• A user must specify the type of the asset.

• A unique identifier must be specified for an asset and

participant.

• The user must specify a valid relationship that relates to an

existing object (participant, asset, or transaction).

The chatbot enforces these rules within the conversation with

the user, where it explicitly asks the user to specify them. For

example, for the rule “A target platform must be specified”,
the chatbot asks the user for the target platform once the user

has completed defining the smart contract use case.

The model validation ensures that the generated DSL model

instance has all the required information for code generation.

F. Code Generation

To generate the smart contract code from the DSL instance

model generated by the chatbot, we used Xtend [20] to write

transformation templates for different blockchain platforms.

The transformation template takes as input the generated

instance model. It applies a set of transformation rules to

generate a smart contract code for any of the three target

platforms supported. The transformation templates used in

this framework are based on the transformation templates of

iContractML [5]. We made the design as modular as possible

to reduce the chances of errors. This was done by creating a

separate executable file for code generation, which was run by

the chatbot only at the end of the conversation. This separates

the code generation part and the DSL model construction part

and ensures that any error in the model is rectified before

it is fed to the code generation section. Table I illustrates the

transformation template code snippets for generating Ethereum

code from the corresponding DSL instance model.

54

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 14,2023 at 14:53:53 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Transformation table template

Concept Abstract Syntax DSL Model Instance Transformation Code Snippet (Ethereum)

Smart Contract /
File

SContract:
Contract: name=ID
Platform:
platform=TargetPlatform

Contract: Contract2
Platform: Solidity

contract <<s.name.replaceAll("","_")

Participant

Participant:
{Participant} ’Participant’
(Creator : creator? T)?

Participant Creator: T {
Name: participant1
List: None

for (p: resource.allContents.filter(Participant)
.toIterable){
participant = participant + "struct" + .. }

Asset
Asset:
Asset Type: type=ID;

Asset Type: Struct{
Name: asset1
List: None

for (a: resource.allContents.filter(Asset)
.toIterable){
asset = asset + "struct" + .. }

Transaction

Transaction:
{Transaction} ’Transaction’
(Mostrar : mostrar? T)?

Transaction{
Name: transaction1
List: None

for (tr: resource.allContents.filter(Transaction)
.toIterable){
transaction = transaction + "function" + .. }

V. EVALUATION

In this section, we evaluate the proposed Chat2Code frame-

work for auto-generating smart contracts. We have conducted

a user experience survey to assess the usability of the chatbot.

1) Design: To evaluate the functionality and usability of

the proposed chatbot, we conducted an online survey. We

provided documented tutorials for the chatbot interface and

a video to guide participants in using the chatbot. We also

provided a basic overview of smart contracts and related

concepts, accessible to non-technical users. We used the survey

to answer three research questions:

• RQ 1. What is the overall experience of the participants

based on their background?

• RQ 2. What are some current limitations and challenges

with the chatbot?

• RQ 3. What are the possible improvements to improve the

adaptability of the chatbot?

The survey questionnaire consisted of four parts:

• Demographics: The questions in this part focus on par-

ticipants’ segmentation, related to participants’ education,

background, gender, age, and work location.

• Pre-test: Based on the participants’ segmentation, we fol-

lowed up with pre-test questions (i) for developers to

understand what tools they normally use to develop their

applications and how comfortable they are with these tools,

and (ii) for non-technical participants, to investigate whether

their work involves participation in programming related

tasks and the type and level of this involvement.

• Functionality and Usability: In this part, we adopted the

Unified Theory on Acceptance and Use of Technology

(UTAUT) introduced by Venkatesh et al. [21] as a technol-

ogy acceptance model. From this model, we have considered

six theories of technology adoption that fit with chatbots: (i)

performance expectancy, (ii) effort expectancy, (iii) attitude

toward using technology, (iv) facilitating conditions, (v) self-

efficacy, and (vi) behavioral intention to use the framework.

The list of the questions of this part is given in Table II.

• Post-test: In this part, we asked the participants about the

overall experience and whether they have any feedback

regarding the chatbot.

2) Survey Respondent Recruitment and Statistics: In this

paper, we aim to analyze the functionality and usability of

the chatbot framework from different users’ perspectives. We

contacted potential participants in multiple ways. We broadcast

our survey in research survey forums to increase our reach.

In addition, we sent emails to smart contract developers on

GitHub and asked our colleagues in the industry to help

broadcast our survey to their friends and colleagues interested

in participating in it. In total, we received 46 responses.
Out of the 46 respondents, 2 of the participants are doctoral

students, 7 hold a Master’s degree, 12 are Master’s students,

further 15 hold a Bachelor’s degree, while 10 participants are

still pursuing their Bachelor’s degrees. Only 9 participants

(19.6%) are familiar with MDE.
To better understand the participants’ experience, we di-

vided the survey respondents into different demographic

groups: developers with blockchain background, general de-

velopers, and non-programmers. Among these 46 participants,

34.78% are developers with a blockchain background, 36.96%

are general developers only, and 28.26% are non-programmers.

69.7% of the developers are familiar with 1 to 5 programming

languages. On the other hand, 27.3% of the developers know

between 5 to 10 programming languages, while 3% know only

one programming language. Most developers are familiar with

programming languages: python, java, Matlab, and Go. 48.5%

55

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 14,2023 at 14:53:53 UTC from IEEE Xplore. Restrictions apply.

TABLE II: List of questions included in the functionality and

usability part.

Metric ID Question

Functionality
Q1

Were you able to generate the smart
contract given in the test case?

Q2
How many times did the chatbot

respond in the wrong way?

Performance
Expectancy

Q3 How useful do you think the chatbot is?

Effort
Expectancy

Q4
My interaction with the chatbot
is clear and understandable

Q5
What do you have to say about the amount

of information that had to be typed for generating the code?

Attitude toward
using technology

Q6
How would you rate the chatbot in terms
of the interest instilled by the chatbot?

Q7 What were the reasons behind the chat being boring?

Facilitating
Conditions

Q8 I have the resources necessary to use the chatbot

Q9 I found the video tutorial helpful

Q10
How good was the chatbot in giving some

clarity about the working of smart contracts?

Q11 The chatbot is compatible with other platforms I use

Self-efficacy Q12
How many times did you refer to the

tutorial/ video in order to build the chatbot.

Behavioral
intention to use

the system
Q13 I plan to use the chatbot in the future

of the developers feel comfortable with a new programming

language within 2 to 4 weeks, while 42.4% of them get

familiar with a new programming language within less than

two weeks.

Of the developers with blockchain background, 62.5% pos-

sess in-depth knowledge about smart contracts and cryptocur-

rency. These developers faced many challenges with current

smart contract languages, namely a lack of documentation and

support (leading to errors in their code), and the completely

new syntax that differs based on the underlying blockchain

platform.

A. Findings

In this section, we discuss the result of evaluating the

functionality and usability of the chatbot. Table III summarizes

the survey results for the different metrics.

1) Functionality: In terms of functionality, we asked the

participants to follow a predefined case in the tutorial. The

chatbot’s main functionality is generating smart contract codes

from the user’s specifications. 78.3% of the participants were

able to generate the final code of the smart contract, while

the remaining 21.7% were able to generate only the instance

model. We also evaluated the number of times the chatbot

responded incorrectly or could not detect the user’s intention

through the conversation. The chatbot responded incorrectly

more than once but less than five times for 45.7% of the

participants. 28.3% of the respondents countered chatbot errors

more than five times but less than ten times. Only a few

users (10.9%) faced more than ten chatbot errors, while the

chatbot responded incorrectly only once for 15.2% participants

through the conversation.

2) Performance Expectancy: This refers to the extent to

which participants believe the system is useful. We asked the

participants how useful the chatbot was before using it (as

an idea) and afterward. The results show that 97.8% of the

participants thought that the idea of generating codes/smart

contracts from the conversation is useful and helpful (evaluated

five and above, where seven is very helpful/useful). Hence, the

idea is appealing to a large percentage of users. After using

the chatbot, we asked the participants again to evaluate its

usefulness. 93.5% of the participants still evaluated the chatbot

as useful (evaluated five and above), where only 4.3% of the

participants rated the chatbot as not useful.

3) Effort Expectancy: This refers to the effort required from

users to use the chatbot. To assess this, we evaluated how

clear and understandable the interaction with the chatbot was.

The results show that 82.6% of users scored it from 5 to

7, where 7 indicates that the interaction was very clear and

understandable. 10.9% of the participants gave it a neutral

score of 4. Only three participants (6.5%) indicated that the

interaction with the chatbot was not clear. We also asked

users about their impression of the amount of data required to

type (i.e., conversation length) to generate the code. 47.8% of

the users indicated that the amount of typing was acceptable

(evaluated 1 or 2, where one is acceptable), while on the other

hand, 37% thought there was too much typing (evaluated at 4

or 5, where 5 is too much). 15.2% were neutral and indicated

that the amount was not too much/just right.

4) Attitude Toward Using Technology: This is a theoretical

measure of participant attitudes using a tool/system. We asked

participants to rate the chatbot in terms of how interesting they

thought it was to interact with the chatbot. 80.4% rated the

chatbot between the scores 1 to 3 (where 1 is very interesting),

while 15.2% rated the conversation with the chatbot as boring

(the scores are 5 or 6). Issues that affected the participants’

attitudes included typing a lot and repetitive messages from

the chatbot.

5) Facilitating Condition: This refers to the extent that

participants can acquire the required skills and knowledge

from the technical infrastructure to use the tool. We measured

whether we provided users with enough resources and tutorials

to help them use the chatbot. 97.8% of participants indicated

that the platform offered the necessary resources. All partic-

ipants found the video tutorial highly beneficial. However,

69.6% of respondents expressed concerns about the chatbot’s

compatibility with the Windows operating system, due to lack

of support of the current version of the Xatkit framework.

In assessing the impact of the provided resources on partici-

pants’ knowledge, results show that 67.4% of participants had

no prior knowledge of smart contracts before using the chat-

bot. Among them, 32.6% gained extensive knowledge, while

28.2% gained some clarity regarding the concept through the

chatbot. Therefore, a tool that can generate codes from natural

language can be a medium of learning and thus can bridge the

gaps between various fields.

6) Self-Efficacy: This measures the user’s ability to use the

chatbot without needing support from a technical person or

56

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 14,2023 at 14:53:53 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Summary of the survey results.

Metric Question Results

Functionality
Q1

78.3% generated the code
21.7% only generated the DSL

Q2

The chatbot responded incorrectly:
- once for 15.2%

- between one and five times for 45.7%
- between five and ten times for 28.3% - more than ten times for 10.9%

Performance
Expectancy

Q3 93.5% thinks chatbot is useful

Effort
Expectancy

Q4
The interaction with the chatbot:

- was clear for 82.6%-was not clear for 6.5%

Q5
The typing amount:

- is acceptable for 47.8%
- is too much for 37%

Attitude toward
using technology

Q6
80.4% rated the chatbot as interesting
15.2% rated conversation is boring

Q7
The chatbot is boring due to:
- There is a lot of typing
- Repetitive messages

Facilitating
Conditions

Q8
97.8% indicated that the platform provides
the required resources to use the chatbot.

Q9 All the participants indicated that the video tutorial was helpful

Q10 69.6% indicated that the chatbot is compatible with other platforms they use

Q11
32.6% already knew about smart contracts

32.6% gained a lot of knowledge in smart contract
28.2% got some clarity regarding smart contracts

Self-efficacy Q12

The participant referred to the tutorial:
- once for 13%

- between one and five times for 34.8%
- between five and ten times for 41.3%

- more than ten times for 10.9%

Behavioral
intention to use the system

Q13
56.52% will likely use the chatbot in the future

30.44% will unlikely use the chatbot

tutorial. 13% of the participants referred to the tutorial only

once while using the chatbot. 34.8% required tutorial help

from one to five times during the conversation, while 41.3%

referred to a chatbot more than 5 times but no more than 10

times. Some participants (10.9%) were unable to interact with

the chatbot easily and referred to the provided tutorials more

than ten times. One possible reason for the less usage of the

tutorial is the video tutorial. This shows that a basic visual

introduction (like video) to technology can greatly reduce the

requirement for technical support.

7) Behavioral Intention to Use the System: Participants

were asked about their potential future usage of the chatbot,

based on their experience with the system. Responses were

rated on a scale of 1 to 7, with 1 indicating very unlikely

and 7 indicating very likely. Results showed that 56.52%

of participants expressed a positive likelihood of using the

chatbot in the future, while 30.44% were not inclined to use

it again. The rest 13.04% were uncertain about using it again.

After analyzing the responses, most participants who said they

were unlikely to use the system again were non-programmers.

B. Discussion

In this section, we discuss the overall user experience

with the chatbot and the factors that affected or improved it.

These factors were extracted from participants’ comments and

suggestions in the survey.

1) What is the overall experience of the participants based
on their background?: Figure 4 depicts the overall experience

of the participants with the chatbot based on their background.

We have presented three metrics - usefulness, likeliness (of

using the bot again), and overall experience. For measuring

usefulness, we studied the performance expectancy scores, and

for likeliness, we considered behavioral intention. In the case

of the overall experience, we asked the users to rate the chatbot

on a scale of 1-10. The values depicted by the bar graphs are

the normalised average score of that metric in a particular

category. The normalised score (NSij) is given by:

NSij =
Sum of scores of users in category i

Ni
× 1

Maxj
(1)

where i ∈ [Non-programmers, Programmers without
blockchain background, Programmers with blockchain back-
ground], j ∈ [Usefulness, Likeliness, Overall experience],
Maxj is the maximum score provided by a user in the metric

j and Ni is the number of participants in category i.
The results show that the normalized score of the overall

experience is similar for the three different user types. How-

ever, for the likeliness metric, it is lower for non-programmers

compared to the other two participant types. This is expected

57

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 14,2023 at 14:53:53 UTC from IEEE Xplore. Restrictions apply.

as most non-programmer participants did not require pro-

gramming in their work or daily life. It should be noted

that the people of all three categories had similar overall

experiences and found the chatbot almost equally useful.

Moreover, the usefulness score generally is more than the

likeliness and overall experience metrics. The derivations as

mentioned above from the figure indicate that such a tool

would be helpful for people of all backgrounds.

Furthermore, we asked the participants to identify the

challenges that affected their experience. Moreover, we have

also obtained the possible improvements from them for future

enhancement of the chatbot.

2) What are the current limitations and challenges with
the chatbot?: To answer this question, we considered the

participants’ responses to the open-ended question, "anything

else that you would like to comment about your experience

with the chatbot". We have coded the participants’ answers

and classified them into positive, neutral, and negative groups,

as shown in Table V. The negative codes mostly represent the

limitations and the challenges of the chatbot, which include

chatbot errors and usability issues.

Most of the chatbot’s errors resulted from user input errors,

limitations in detecting the user intention, or technical ques-

tions or responses that may have frustrated the user. Some

user input errors failed to generate the smart contract codes

in some cases, for example, referring to non-existent variables

such as participant, asset, or transaction. The chatbot did not

notify the users of these errors, adding confusion. The input

detection limitations resulted from the sentences’ sensitive

structure that the NLP engine expected. Moreover, the NLP

engine sometimes requires a full sentence, which increases

the amount of user effort required to define a use case. This

has caused some frustration and negatively affected the user

experience.

One of the main limitations many participants pointed out

was the typing required to create the smart contract. This

increased the likelihood of error and made the chatbot more

complicated. Furthermore, minor issues such as the level of

detail of the chatbot questions/responses or the long messages

from the chatbot decreased the clarity and understandability

of the interaction with the chatbot.

3) What are the possible improvements to improve the
adaptability of the chatbot?: This question was answered

based on the analysis of the participants’ suggestions and

comments. We have categorized the suggestions into user

experience enhancement, interface enrichment, and chatbot

functionality improvement.

One important way to improve user experience and decrease

input error would be to reduce the amount of typing the

system requires. This may include providing template con-

tracts, adding an auto-completion mechanism, and implement-

ing drop-down lists for choosing from a set of constructed

sentences. It would also be helpful to provide an intuitive

way to track progress as the contract is written so the user

remains oriented within the larger process. A side-by-side

GUI visualization might make that progress clear. Moreover,

Fig. 4: Metrics to understand expectations and overall experi-

ence of the users.

to avoid user input errors, an advanced input sanitization

algorithm must be used to detect possible spelling mistakes or

detect when the user modifies or uses non-existing variables.

Furthermore, improving the NLP algorithm and increasing the

corpus of training sentences will help boost the usability of the

chatbot. To make the chatbot more accessible to non-technical

users, the level of questions/responses of the chatbot should

be simpler, and if that is not possible, it should be defined in

simple terms as a note.

VI. THREATS TO VALIDITY

In this paper, we used smart contract development as a

running example to automatically generate code from conver-

sational syntax. A threat to the external validity of our research

is whether or not our selected running example is general

enough for our approach to be extended to other traditional

domains of software development such as web development,

object-oriented programming languages, Internet of things

(IoT), etc. We maintain that smart contract development is

complex and there are not many experienced developers in

this field [14], which serves to demonstrate the motivation of

this work. However, there is still a need to investigate the other

software development domains to assess the generalizability of

the proposed approach.

We surveyed 46 participants to evaluate the implemented

chatbot framework. A threat to validity might have been

that we missed potential users who might have assessed our

solution differently from those in our study. To reduce this

threat, we targeted participants from different backgrounds

with different levels of experience (smart contract develop-

ers, general developers, and non-programmers). This diversity

of backgrounds helped us reflect on real-world conditions

of smart contract development. Nevertheless, the number of

participants was small, and we need to survey on a larger

scale for better feedback, which is the next stage of our

project. Furthermore, survey respondents may have provided

biased answers based on what we want to hear for several

reasons. To help in obtaining unbiased answers, we allowed

the respondents to be anonymous, if they so chose.

58

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 14,2023 at 14:53:53 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Related works comparison

Related
Work

Generating
Conceptual
Model

Query
Model

Create
Model Instances

Chatbot
Development

Input
Sanitization

Model
Validation

Traceability
Code

Generation
Evaluation
Method

[9] � � �
[10] �
[22] �
[23] �
[23] �
Our

approach
� � � � � � � �

TABLE V: Participants’ responses codes statistics for RQ2.

Participants’ responses codes # of participants

Positive
great experience 8

gained knowledge 4

Neutral/ no comments - 17

Negative
chatbot’s errors 9

usability issues 8

VII. RELATED WORK

This section presents the related work of using chatbot

with MDE whether it was to generate conceptual models,

query models, or developing chatbots. Furthermore, we present

the related work of auto-generating smart contract artifacts

from chatbots or NLP. In general, there are few works done

in the field of chatbot and MDE [10, 22, 23, 24]. Table

IV summarizes the related work and compares it with our

approach. Most of the discussed related work focuses on

generating, querying models, or developing chatbots, while in

our approach, we focused on querying and creating instances

from models. Furthermore, we applied our approach to auto-

generating codes from chatbots, in particular smart contract

artifacts. There is also related research work in the field of

using NLP to domain modelling such as in [25, 26, 27].

However, these works focus on analysing text (description)

instead of interactive conversation as in our case.

VIII. FUTURE RESEARCH DIRECTIONS

Enhancing NLP algorithms is a vital aspect of improving

chatbot technology. By improving NLP, chatbots can generate

more accurate code from user conversations. This can be

achieved by utilizing more sophisticated machine learning

algorithms and incorporating additional sources of information

such as knowledge graphs. One promising area of research that

shows potential for improving NLP is using large language

models (LLMs). These models can significantly enhance the

effectiveness and efficiency of chatbots integrated with MDE

frameworks. They improve understanding of user queries

and commands, leading to a more engaging conversational

experience. Additionally, LLMs continuously learn from user

interactions, allowing the chatbot to enhance responses and

adapt to user preferences over time. As the models receive

more training data, their language generation capabilities

become more precise and context-aware, resulting in highly

accurate and contextually appropriate responses. Therefore,

using LLMs can be a promising direction for improving

NLP algorithms and ultimately enhancing the performance of

chatbots in generating code.

IX. CONCLUSION

In this paper, we investigated the use of chatbots as

an interactive alternative approach to concrete syntax for

modelling frameworks to enable code generation from chat

conversations. We proposed an approach for auto-generating

platform-independent codes from conversational syntax. We

showcased our methodology with smart contract development

and implemented a chatbot framework, for modelling and

developing smart contracts. Furthermore, we evaluated the

chatbot framework in terms of usability, and functionality

based on a user experience study. The results show that the

overall user satisfaction depends on the participant’s back-

ground. However, 79% of the participants in all groups had

an above-average overall experience in using the framework.

This work is considered an initial step towards making

coding accessible to a wider community of domain experts

by enabling code generation from chat conversations. An

approach that can help us reap the benefits of unified mod-

elling without limiting our ability of expression. The current

approach and implementation require further improvements to

achieve it’s ultimate goal. In future work, we plan to extend

the approach to other case studies in software development

such as mobile development, IoT, and other domain specific

and product line development scenarios.

ACKNOWLEDGMENT

We acknowledge the support of the Natural Sciences and

Engineering Research Council of Canada (NSERC), [funding

reference no. RGPIN-2023-05484] and the Icelandic Centre

for Research (Rannís),[funding reference no. 218202-051].

REFERENCES

[1] Marco Brambilla, Jordi Cabot, and Manuel Wimmer.

Model-driven software engineering in practice. Synthesis
lectures on software engineering, 3(1):1–207, 2017.

[2] Iftikhar Azim Niaz. Automatic code generation from

uml class and statechart diagrams. Graduate School
of Systems and Information Engineering., University of
Tsukuba, Ph. D. Thesis, 2005.

59

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 14,2023 at 14:53:53 UTC from IEEE Xplore. Restrictions apply.

[3] An Binh Tran, Qinghua Lu, and Ingo Weber. Lorikeet:

A model-driven engineering tool for blockchain-based

business process execution and asset management. In

BPM (Dissertation/Demos/Industry), pages 56–60, 2018.
[4] Juha-Pekka Tolvanen and Steven Kelly. Model-driven

development challenges and solutions: Experiences with

domain-specific modelling in industry. In 2016 4th Inter-
national Conference on Model-Driven Engineering and
Software Development (MODELSWARD), pages 711–

719. IEEE, 2016.

[5] Mohammad Hamdaqa, Lucas Alberto Pineda Metz, and

Ilham Qasse. icontractml: A domain-specific language

for modeling and deploying smart contracts onto multiple

blockchain platforms. In Proceedings of the 12th System
Analysis and Modelling Conference, pages 34–43, 2020.

[6] Mohammadali Gharaat, Mohammadreza Sharbaf, Bah-

man Zamani, and Abdelwahab Hamou-Lhadj. Alba: a

model-driven framework for the automatic generation

of android location-based apps. Automated Software
Engineering, 28(1):1–45, 2021.

[7] Xuan Thang Nguyen, Huu Tam Tran, Harun Baraki, and

Kurt Geihs. Frasad: A framework for model-driven iot

application development. In 2015 IEEE 2nd World Forum
on Internet of Things (WF-IoT), pages 387–392. IEEE,

2015.

[8] Federico Ciccozzi, Ivica Crnkovic, Davide Di Rus-

cio, Ivano Malavolta, Patrizio Pelliccione, and Romina

Spalazzese. Model-driven engineering for mission-

critical iot systems. IEEE software, 34(1):46–53, 2017.
[9] Sara Pérez-Soler, Mario González-Jiménez, Esther

Guerra, and Juan de Lara. Towards conversational syntax

for domain-specific languages using chatbots. J. Object
Technol., 18(2):5–1, 2019.

[10] Sara Pérez-Soler, Esther Guerra, and Juan de Lara.

Flexible modelling using conversational agents. In 2019
ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems Companion
(MODELS-C), pages 478–482. IEEE, 2019.

[11] Jack Cahn. Chatbot: Architecture, design, & develop-

ment. University of Pennsylvania School of Engineering
and Applied Science Department of Computer and Infor-
mation Science, 2017.

[12] Ahmad Abdellatif, Diego Costa, Khaled Badran, Rabe

Abdalkareem, and Emad Shihab. Challenges in chatbot

development: A study of stack overflow posts. In Pro-
ceedings of the 17th International Conference on Mining
Software Repositories, pages 174–185, 2020.

[13] Vitalik Buterin et al. A next-generation smart contract

and decentralized application platform. white paper,
3(37), 2014.

[14] Weiqin Zou, David Lo, Pavneet Singh Kochhar, Xuan-

Bach D Le, Xin Xia, Yang Feng, Zhenyu Chen, and

Baowen Xu. Smart contract development: Challenges

and opportunities. IEEE Transactions on Software Engi-
neering, 2019.

[15] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen,

Xiangping Chen, Jian Weng, and Muhammad Imran.

An overview on smart contracts: Challenges, advances

and platforms. Future Generation Computer Systems,
105:475–491, 2020.

[16] Shweta Suran, Vishwajeet Pattanaik, and Dirk Draheim.

Frameworks for collective intelligence: A systematic

literature review. ACM Computing Surveys (CSUR),
53(1):1–36, 2020.

[17] Li Yujian and Liu Bo. A normalized levenshtein distance

metric. IEEE transactions on pattern analysis and
machine intelligence, 29(6):1091–1095, 2007.

[18] Gwendal Daniel, Jordi Cabot, Laurent Deruelle, and

Mustapha Derras. Xatkit: a multimodal low-code chatbot

development framework. IEEE Access, 8:15332–15346,
2020.

[19] Navin Sabharwal and Amit Agrawal. Introduction to

google dialogflow. In Cognitive virtual assistants using
Google Dialogflow, pages 13–54. Springer, 2020.

[20] Lorenzo Bettini. Implementing domain-specific lan-
guages with Xtext and Xtend. Packt Publishing Ltd, 2016.

[21] Viswanath Venkatesh, Michael G Morris, Gordon B

Davis, and Fred D Davis. User acceptance of information

technology: Toward a unified view. MIS quarterly, pages
425–478, 2003.

[22] Sara Pérez-Soler, Esther Guerra, and Juan de Lara.

Model-driven chatbot development. In International
Conference on Conceptual Modeling, pages 207–222.

Springer, 2020.

[23] Sara Pérez-Soler, Gwendal Daniel, Jordi Cabot, Esther

Guerra, and Juan de Lara. Towards automating the

synthesis of chatbots for conversational model query.

In Enterprise, Business-Process and Information Systems
Modeling, pages 257–265. Springer, 2020.

[24] Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, Gwen-

dal Daniel, and Jordi Cabot. A model-based chatbot

generation approach to converse with open data sources.

arXiv preprint arXiv:2007.10503, 2020.
[25] Rijul Saini, Gunter Mussbacher, Jin LC Guo, and Jörg

Kienzle. Domobot: a bot for automated and interac-

tive domain modelling. In Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Pro-
ceedings, pages 1–10, 2020.

[26] Mohd Ibrahim and Rodina Ahmad. Class diagram

extraction from textual requirements using natural lan-

guage processing (nlp) techniques. In 2010 Second
International Conference on Computer Research and
Development, pages 200–204. IEEE, 2010.

[27] Marcel Robeer, Garm Lucassen, Jan Martijn EM Van

Der Werf, Fabiano Dalpiaz, and Sjaak Brinkkemper.

Automated extraction of conceptual models from user

stories via nlp. In 2016 IEEE 24th international re-
quirements engineering conference (RE), pages 196–205.
IEEE, 2016.

60

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 14,2023 at 14:53:53 UTC from IEEE Xplore. Restrictions apply.

