
BlockTorrent: A Blockchain Enabled Privacy-Preserving Data Availability Protocol for
Multi-stakeholder Scenarios

1st Ambrose Hill
School of Computer Science and Engineering

University of New South Wales
Brisbane, Australia

ambrose.hill@student.unsw.edu.au

2nd Shailesh Mishra
Department of Electrical Engineering

IIT Kharagpur
West Bengal, India

mshailesh0511@iitkgp.ac.in

3rd Atharv Singh Patlan
Department of Computer Science

IIT, Kanpur
Kanpur, India

atharvsp@iitk.ac.in

4th Ali Dorri
School of Computer Science

Queensland University of Technology
Brisbane, Australia
ali.dorri@qut.edu.au

5th Volkan Dedeoglu
Data61
CSIRO

Brisbane, Australia
volkan.dedeoglu@data61.csiro.au

6th Raja Jurdak
School of Computer Science

Queensland University of Technology
Brisbane, Australia
r.jurdak@qut.edu.au

7th Salil Kanhere
School of Computer Science and Engineering

University of New South Wales
Sydney, Australia

salil.kanhere@unsw.edu.au

Abstract—As industries across the globe continue to digitize
their processes, the need for a mechanism to share private
data between multiple stakeholders is becoming increasingly
apparent. However, sharing data poses challenges around privacy
and accessibility, particularly in the event of disputes between
stakeholders with a shared interest, such as a supply chain.
Auditors currently rely on stakeholders’ compliance in order
to verify data. Malicious parties may falsify the data before
passing it onto the auditor. Using supply chains as a case study we
present BlockTorrent, a protocol to address these challenges and
help facilitate data sharing between supply chain participants.
BlockTorrent allows participants to securely share their data
in near real-time with other participants without the risk of
information leakage or allowing the falsification of data, whilst
guaranteeing data availability for auditors. This is achieved using
a novel combination of distributed storage and on-chain secret
sharing. This paper provides an implementation and evaluation
of BlockTorrent, highlighting its performance and a security dis-
cussion. Lastly, we provide a discussion on the privacy challenges
that were considered when designing BlockTorrent.

Index Terms—Blockchain, Supply Chain, Multi-Stakeholder, IoT,
BitTorrent

1. Introduction

There are many systems in the world today that heavily
rely on participant compliance when it comes to data sharing
and accessibility. The most common of these systems are sup-
ply chains [1]. Supply chains involve a group of organisations
that are responsible for facilitating the transfer of goods and

information from suppliers to customers. Recently, IoT sensor
devices have been integrated with some supply chains allowing
for the automatic tracking of items during their journey from
supplier to the customer. Furthermore, the sensorisation of
supply chains has given the stakeholders access to real-time
data allowing optimisation and improving efficiency.

Participants willing to share real-time data amongst them-
selves will facilitate faster trades, enjoy lower operational costs
and have the ability to detect and competently rectify delays.
However, data sharing among participants in supply chains
poses privacy challenges. Sharing data can lead to information
leaking e.g. contextual details such as quality or quantity of
supplies. Thus, it is highly critical for the supply chain entities
to keep IoT data secure and private. In response, many supply
chain entities prefer centralised solutions for managing their
digital data. This causes an issue when an audit is required.
Each entity has the ability to manipulate or misrepresent the
data that is supplied. In existing solutions, some auditors
require hashes of the data to be shared at the point of capture,
so that the data cannot be changed at a later date. Storing
only the hash cannot solve this problem as the participant that
provided the hash can claim that the data has been lost.

One potential technology to facilitate this sharing is
Blockchain. Blockchain supports multi-stakeholder applica-
tions, such as a supply chain, with data immutability, audibility
and access control [2]. Blockchain based supply chains have
seen increased interest due to their improved scalability as
seen in [3]–[6]. Although blockchain is a promising solution
to address supply chain challenges [7], there is still the over-
arching problem that data stored on the blockchain can be
accessed by anyone on the network. To solve this issue there

103

2021 IEEE International Conference on Blockchain (Blockchain)

978-1-6654-1760-0/21/$31.00 ©2021 IEEE
DOI 10.1109/Blockchain53845.2021.00024

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

lo
ck

ch
ai

n
(B

lo
ck

ch
ai

n)
 |

 9
78

-1
-6

65
4-

17
60

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
BL

O
CK

CH
AI

N
53

84
5.

20
21

.0
00

24

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on May 11,2022 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

are a few avenues available to ensure the privacy of data on
a blockchain, such as using a permissioned chain or using
channels on Hyperledger [8]. Even these solutions come with
challenges when trying to share data that only exists on a
channel or permissioned chain, such as participants colluding
to hide information or selectively storing partial information in
the first place. Furthermore, supply chain entities could store
their data off the chain and only submit hashes of the data
to the blockchain, to prevent the leakage of privacy-sensitive
information, similar to the solution discussed earlier. Instead of
sharing hashes, some solutions require sharing encrypted data,
however a malicious party could claim they lost the decryption
key. While this approach ensures data privacy, it impacts the
accessibility of the data. The main concern is that this data
can still be made intentionally unavailable, such as when a
supply chain entity lies about what data is being captured.
There is thus a critical need for mechanisms that ensure data
availability and integrity to authorised parties while preserving
the privacy of data contributors.

This paper proposes BlockTorrent, a novel blockchain-
based data management protocol, enhances data availability
while protecting the privacy of the participants. BlockTorrent
is an integration of BitTorrent [9], a Peer-To-Peer (P2P) file
sharing protocol and Blockchain. Although BlockTorrent can
be used by any application that requires data availability
among multiple stakeholders, we focus on the supply chain
context as a representative case study. To ensure data access-
ability, BlockTorrent distributes data among a set of peers in
the blockchain. The participating nodes should be able to read
the data for auditability; however, this compromises the user
privacy, as outlined earlier. In BlockTorrent, data is split into
multiple chunks and each chunk is sent to a randomly chosen
node for storage. The selection of nodes involves hashed
sharding, which is a random process, where each node in the
network is assigned a range of values, each chunk is hashed
and then distributed to the nodes based on the value of the
digest. Data splitting helps prevent unauthorised access, as
even if an adversary is able to decrypt a chunk, they still
need every other chunk to retrieve the file. It also reduces the
load on the network through the transmission of small packets
rather than the bulk transfer of IoT data logs, similar to how the
BitTorrent [9] protocol distributes files. We provide a solution
on how the data will be maintained through its lifecycle. As
the data is being dissected, there is a need to store how the
data is being split up and where each piece is located, so that
it can be recreated later on. BlockTorrent uses a permissioned
blockchain to store the metadata of each distributed chunk.
Our protocol allows each participant in a supply chain to
continually share their data with other participants without
leaking private information or impacting on the supply chain
performance. The major contributions of this paper are:

• A data sharing protocol that can be used by participants
to share their private data on the main blockchain
securely. These participants can be generalised to any
untrusting stakeholders The protocol enhances data
availability while preserving data confidentiality, as
it distributes chunks of data to random peers on the
network while securely storing the encrypted details
of file sharing on the blockchain. The secret sharing

process is implemented using a smart contract such
that no participant is able to manipulate

• A discussion about performance and privacy trade-
offs that came into consideration while designing the
BlockTorrent protocol.

• An evaluation based on an implementation of the
protocol that demonstrates the system’s robustness and
resistance to major security attacks and efficacious
performance in terms of scalability.

The paper is structured as follows: Section 2 discusses the
related works, while Section 3 provides an overview of the
proposed privacy-preserving data sharing solution. Section 4
describes our implementation and presents results from our
evaluations. Section 6 considers the main challenges faced
when designing a distributed but secure database and provides
a discussion on the design trade-offs discovered in this paper.
Finally the paper concludes with Section 7.

2. Related Work

Table 1 gives a summary of the key features used in related
literature and production systems. This section will provide
some brief discussion on the related work in distributed data
storage, data sharing, and data availability.

The authors in [17] present a survey of the current
Distributed File Systems (DFS) and their integration with
blockchain. They discuss two main solutions in Ethereum’s
Swarm and IPFS and compare the two via a wide range of
metrics. They also provide a seven layer framework that any
DFS should have, that consists of identity, data, data-swap,
network, routing, consensus and incentive layers.

In [18], the authors discuss the major issues and challenges
for data storage in blockchain. The proposed solution stores
the data in an offline storage medium and the corresponding
hash in the blockchain. It also mentions ”BigchainDB”, which
enables blockchain-like trusted transactions on top of an ex-
isting modern distributed database system. The authors further
discuss the issues with blockchain storage such as the impact
on the ”Right to Forget”. The paper does not mention any
methods to handle data distribution or splitting up data for
efficient storage, access, and availability.

The authors in [14] discuss a system where data is en-
crypted and stored using a Trusted Computing Environment -
Intel SGX, and the corresponding hash of the data is stored
in the blockchain. A third-party who needs to access the data
can request the data and check integrity via the hash. The
system does not have a data splitting mechanism for splitting
and reconstructing information which can lead to bottleneck
congestion when the network is busy. There is only one host
of the data, i.e. the data owner, hence, it can be very difficult
for other parties to acquire that data. There is no distribution
protocol mentioned as they attempt to solve the challenge
of data management through trusted environments. The Intel
SGX can be used to provide this environment but it forces
users of the system to buy specific, potentially expensive
hardware.

The authors in [15] propose a system that stores documents
in a blockchain-based cloud server and keeps track of the
changes being made to the documents. Any user of the network

104

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on May 11,2022 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

Related Work Decentralised Availability Privacy Integrity Generalised Data Store

Ethereum Swarm [10] ×
IPFS [11] × ×
BTT [12] × ×

BigChainDB [13] × ×
IoTSmartContract [14] × ×

Controllable BC Data [15] × ×
Secure IoT [16] × × ×

BlockTorrent

TABLE 1: Summary of BlockTorrent’s comparison to related work.

can upload a document to the system. If the document is to
be altered by another user, then he has to send the changes
to the owner in the form of encrypted messages, which have
to be validated. There is a Trusted Authority (TA) which has
control over the network. All the requests are sent to the TA,
which keeps track of the changes made to the document, also
centralising the system.

In [12], the authors propose BitTorrent Token (BTT), a
crypto token that is attached to the BitTorrent network. It
used as a reward for users that seed content which incentives
more users and creates a more active network, overall boosting
download speeds. Users can then use these tokens to pay for
a faster download speed from other users. The token will be
integrated with the BitTorrent File System which is a proposed
decentralised file storage system that will make use of the
millions of BitTorrent nodes. The main purpose of BTT is
to facilitate faster downloads for the torrent and file storage
networks and not guarantee data accessability.

In [16], the authors propose a system that splits the data
into data chunks and then distributes the data chunks among
the nodes using a proximity metric. The system is structured
into two planes: control and data. The data plane uses a cloud
based service to store the data. The control plane is built on a
blockchain and keeps the access control policies and metadata
on the stored data. To reduce the storage and bandwidth
requirements, data is compressed before encryption. The trade-
offs of their proposed system, such as the data availability
vs. the number of database replications are not discussed.
Similarly, they have not considered how a party can reconstruct
the whole data from the distributed data chunks.

In [19] the authors propose using Shamir’s sharing tech-
nique in combination with a partitioned blockchain to improve
data integrity and privacy. They formulate a cloud storage
system that is able to distribute data storage amongst the peers
on the network, however the system does not guarantee data
availability. The authors do not provide an implementation and
their evaluation is theory based.

The authors in [20] propose a secure online storage system
that splits up the storage of information and meta data. They
make use of the blockchain to store the metadata and distribute
information over a P2P network similar to BitTorrent. The sys-
tem relies on users to create their shared secrets independently
which does not guarantee availability. The authors also do not
provide an implementation or performance evaluation.

So far, distributed storage approaches have been unable
to strike a balance between protecting sensitive information
of data owners and ensuring data availability and integrity to
authorised parties. The current state of the art does not offer

solutions that distribute, route, find and reconstruct chunked
data, rather they focus on using the immutability feature of
blockchain to store the data hash. Related works also lack a
thorough privacy and security evaluation, thus leaving room
for future work to address these challenges by providing
discussions and evaluations of potential solutions.

3. BlockTorrent: A Privacy-Preserving Data
Availability Protocol

This section outlines the details of BlockTorrent using
supply chain applications as an example scenario. Accessing
information in large supply chains is a challenging problem.
This is largely due to the ownership of the information, as each
individual organisation has sole ownership of their captured
data and there is currently no process to guarantee access to
that data. Ideally supply chain agents would act in good faith
and there would be no need for third parties to access the
private information of a supply chain participant. However, due
to imperfect processes, there are disputes and delays at many
stages of the supply chain. Each of these disputes can cause an
expensive and lengthy resolution process which incentivises
companies to misconstrue the information they present to a
mediator. Hiding, manipulating or claiming ignorance only
furthers the delay, impacting more participants and increasing
costs.

BlockTorrent is a privacy-preserving protocol that en-
sures data availability during audits. BlockTorrent combines
blockchain technology as the underlying platform, to ensure
immutability and availability through replication, and the Bit-
Torrent protocol to share large amounts of data chunks with
each participant, which enhances data privacy through data
splitting. BitTorrent has been proven to be an effective file
sharing protocol in P2P networks, and it further improves
BlockTorrent’s transfer times, allowing for near real-time data
sharing.

Each participant is incentivised to share supply chain re-
lated data but in a way that it is secured from non-authorised
parties. This incentive is two fold: firstly, BlockTorrent uses
penalties for non-compliance, that can be financial or in the
extreme case result in removal from the system, furthering
the incentive for honest participant behaviour. Secondly, a
participant honestly complying with BlockTorrent will be able
to provide reliable evidence that shows they are adhering to
legal industry regulations. Since the data is being shared as it
is captured, the chance of it being manipulated in favour of
the participant is slim, which helps verify compliance.

105

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on May 11,2022 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

Main Chain and
Overlay network

Auditor

Participant

Participant

Participant

Admin
NodePrivate

Database

Admin
Node

Admin
Node

Admin
Node

Figure 1: A high level overview of the proposed framework.
First, we will introduce the network layers and their in-

teractions within system architecture. BlockTorrent relies on
three key networks set up in parallel in order to reduce bottle-
necks in network traffic. Next, we will outline the functionality
that the proposed system offers and describe how it solves the
data sharing challenges explained in the previous sections.

3.1. System Architecture

In this section, we outline the system architecture for the
data sharing framework defined above. First we define the key
entities of the architecture:

• Participant: Any organisation that is a part of the
supply chain employing BlockTorrent. This could be
the supplier, transporter, retailer or an authority repre-
senting the local or state governments.

• Admin Node: A group of nodes, one for each partici-
pant that is responsible for accessing all layers of the
network. These nodes monitor and maintain the data
sharing mechanism for each organisation.

• Auditor: A unique participant that is responsible for
auditing the supply chain data and is the entity that is
responsible for dispute resolution between participants.

• User: All other users interacting with the system such
as a buyer.

The participants involved in the supply chain jointly form a
consortium blockchain where they are able to communicate
and exchange data. This blockchain will be referred to as the
main chain. Each organisation also has its own private database
that contains the associated data of the sensors and any other
information required for processes along the supply chain. This
database is owned and controlled by the participant. Each par-
ticipant is a member of the overlay network, which facilitates
all off-chain communication for BlockTorrent. The admin node
for each participant has access to the main chain, the overlay
network as well as its organisation’s private database in order
to carry out the data sharing mechanism.

BlockTorrent can be used with a private database of any
form, including another blockchain, particularly when supply
chains have multiple paths and processes involving a subset
of participants from the main chain. This private chain is
secure from other participants on the main chain but also
allows members from one participant to share and validate

information amongst themselves. Fig. 1 displays the basic
setup for a participating organisation.

Main Chain: Serves as the interface between organisations
and BlockTorrent. Each participant of the supply chain has
access to the main chain and the ability to read and write
transactions. Participants are added to the main chain when
they join the supply chain consortium and use it as the source
of truth in the network. The main chain facilitates the sharing
of encrypted data between the parties. This includes both
participant to participant data sharing and audit requests. The
protocol has been designed to limit traffic on the main chain
as it is distributed between all participants and can cause
congestion in the network. As a result, metadata of shared
chunks and decryption keys for these chunks are stored on
the main chain.

Private Database: The private database is used for each
individual member’s private business data. Its purpose is to
facilitate the use of the data while securing it from the public
network. This can be any type of database, the only require-
ment is that the data is accessible from a node capable of
performing BlockTorrent functions, i.e, not a computationally-
constrained device.

Overlay Network: This is the network that facilitates all
non main chain communication and storage. The chunks of
data are distributed on the overlay network as per the BitTor-
rent protocol. Auditors on the overlay network will interface
with BlockTorrent’s main chain to access the metadata of a
chunk and then request that chunk from a peer on the overlay
network. The admin node consortium, an off-chain network
consisting of at least one admin node from each participant,
resides on the overlay network. This consortium is responsible
for ensuring each file passed to the overlay network is split
and distributed in a random manner. This is achieved using
hashed sharding [21] and is explained in Section 3.2.1.

3.2. System Functionality

The framework introduces a data splitting function that
is employed to ensure data availability while preserving the
privacy of the data. Organisations that are complying with
BlockTorrent will share the encrypted data they capture as
well as the associated decryption key, which will be discussed
in Section 3.2.2. The data is split and shared across all partici-
pants using hashed sharding to randomly distribute the chunks
between participants, this is explained in more detail in Section
3.2.1. A table of contents for each file is generated as the file is
chunked and distributed. Participants send acknowledgments
when chunks are received which are added to the table for
that file. Once all chunks have been distributed the register is
encrypted and sent to the main chain along with the decryption
keys for the file and table.

To access the stored data, an auditor must request access
to the decryption key through a smart contract on the main
chain. This access request is recorded and emitted as an
event to the entire network to ensure that auditors are only
accessing the data when needed. Broadcasting this event is a
deterrent for any unauthorised access by an auditor or even
colluding participants. As the organisation has no influence
on data access once it has been stored in BlockTorrent, data
accessibility is guaranteed.

106

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on May 11,2022 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

The system must support two main functions: storing and
retrieving the data. We describe these functions below but first
we need to explain two key concepts that BlockTorrent utilises,
the key management mechanism and Hashed Sharding.

3.2.1. Hashed Sharding. Hashed sharding [21] is the tech-
nique used by the admin node consortium to determine where
each chunk is being sent.

First, each participant is given a range of hash values for
which they are responsible. Then each chunk is hashed and
sent to any peer that is responsible for the range that the
digest falls into. To ensure accessibility, three separate hash
functions are used, allowing the chunks to be replicated and
stored by multiple peers. Using different hash functions allows
each peer to only maintain one range of hash digests while still
securely replicating the data and preventing against network
failure [22].

As each chunk is processed at the admin node consortium
it is hashed by each node, using the pre-determined hash
algorithms and then digests are compared. As long as the
digests match, that chunk is distributed to every participant
that is responsible for the range in which each digest falls.

3.2.2. Key Management. The key management system has
the challenging role of generating, distributing and securely
storing the key for the encrypted file. To ensure that pri-
vacy concerns are met this key needs to be shared privately.
BlockTorrent uses Shamir’s Secret Sharing (SSS) technique
[23] to first split up the key into distinct shards. SSS has the
unique property that, if the key is split into n parts any k can
recreate the key in its entirety. This is the core idea behind
key management in BlockTorrent. Each key is split into n
parts where n is less than the total number of participants and
k is agreed upon by all participants beforehand. Then the key
shards are distributed to participants randomly. How this is
achieved is explained in Section 3.2.1.

Although SSS provides a mechanism to share a secret
between multiple parties there is still the challenge of verifying
that each share is part of the same key. For this reason, the
key is split on chain and the shards are used to build a Merkle
Tree [24]. The Merkle Tree is used to generate cryptographic
proofs for each shard. Each proof is also sent to the main chain
to be stored so that participants can verify that shards are from
a particular key. Any participant who receives a shard can use
the proof on the main chain to prove that the shard is valid
and a part of the correct key. This process is similar to the
Zero Knowledge Proof used in ZCash [25] except here, each
participant acts as a prover for their own keys and a verifier
for other participant’s keys.

The secret keys are passed to the blockchain network using
transient fields, which are ways of providing arguments to
functions in chaincode without them being recorded [26]. The
key shards are stored in the different organisations’ private
data collections. With this mechanism, no privacy sensitive
data is visible to the main chain yet each participant is able
to share their private keys with other participants securely. It
also allows auditors to request k shares of a key and recreate
the key without any input from the key owner.

Figure 2: Transaction flow for the storing of data.

3.2.3. Storing Data. Fig. 2 shows the following steps for
storing a new file in BlockTorrent:
Step 1: New sensor data is collected and sent to the private
database.
Step 2: The new data is detected by the admin node of the
organisation. The data is first encrypted and then chunked.
The number of peers the chunk is sent to is determined by the
total number of participating peers and is determined through
hashed sharding as explained in Section 3.2.1.
Step 3a: The admin node consortium while splitting the file
and determining the owner peers, stores a record of each
chunk’s hash, owner peers and timestamp which is sent to
the main chain. Owner peers are the peers that were sent a
copy of the chunk. A master table is created for each file and
updated with the record of this chunk. Each admin retains a
copy of the master table until it is agreed upon and stored in
the main chain.
Step 3b: The admin peer then sends each chunk to the list of
determined peers. The message is in the following format:

Mchunk = (Ce|O|ts)
where Ce is the encrypted chunk, O is the owner of the file
and ts is a timestamp.
Step 4: If this is the last chunk to be distributed, then the
master table is completed, encrypted and submitted to the main
chain. This information maintains the system integrity and has
the following format:

Mmastertable = (H(MT)|MT |O|ts)
where H(MT) is the hash digest of the master table, which is
used as a unique identifier for each chunk, MT is the encrypted
master table with the chunk distribution information in it, O
is the owner of the file and ts is the timestamp of when the
file was sent.
Step 5: The key is submitted to the key management smart
contract on the main chain that is responsible for splitting and
sharing that key between participants. This smart contract also
builds the merkle tree and key share proofs.

As per the above steps, the decryption key and chunks of a
file is all that is required to recreate a file. Moreover, this key
has been split into multiple parts and can be recreated by the
auditor and a certain amount of participants (the exact amount
is determined by how the key is split). The chunk distribution
data is accessible to the auditor at all times.

107

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on May 11,2022 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Transaction flow for file retrieving.

3.2.4. File Retrieval. Fig. 3 shows the following steps for
retrieving a file using BlockTorrent:
Step 1: The auditor requests the decryption key shares from
the smart contract. This request can be validated via a vote of
the admin node consortium. Once the request is validated, the
participants will submit a transaction indicating their key shard
can be accessed by the auditor. When the auditor receives
enough number of key shards they can recreate the decryption
key.
Step 2: The auditor retrieves the master table from the main
chain.
Step 3: The auditor combines the key shards and recreates the
decryption key. This key can be used to decrypt the master
table.
Step 4: For each chunk in the master table, the auditor looks up
its location, requests the chunk from one of the owner peers. If
one of the owner peers is unavailable or denying the request,
another owner peer is selected until the chunk is received. The
auditor can then check the hash of the chunk against the hash
recorded in the master table to ensure the chunk is correct.
Step 5: The auditor combines each chunk, computes the hash,
and compares it with the hash stored in the main chain. If they
match, the auditor uses the key from Step 3 to decrypt the file.
If any hash does not match its chunk, the auditor requests the
chunk again until all chunks have been acquired and validated.

At no point is the organisation whose files are being
audited required to participate, significantly diminishing their
ability to lie and misconstrue information during the audit
request. There is still the issue of centralisation of power
at the admin node, where organisations could falsify data as
it is being recorded. This can be minimised by having the
captured data processed by the admin node consortium before
it is processed through the data processing unit, maintained
by each participant.

With the functions described in Section 3.2.3 and 3.2.4,
participants have access to mechanisms for sharing data with
only those participants that they are engaged with. An auditor
who resides on the main chain can use the data retrieval
function to perform audits on participants. An auditor in
BlockTorrent assumes two roles: (1) mediator for disputes
between participants, and (2) auditor for the network, either as
part of a random inspection or as the result of a fault. The fault
could be a dispute amongst participants or an end user (e.g.

consumer or retailer) receiving a product that is not up to their
satisfaction. As an authority, the auditor manually inspects the
relevant products and analyses the relevant information stored
on the main chain. If any party is found to be in conflict
with the main chain, they are penalised. The party at fault
would be responsible for all costs related to the fault, including
the fees and the cost of the audit. A financial penalty can
also be applied by the admin node consortium if the party at
fault financially profited from the fault. The penalty should
be higher than any potential financial benefits gained from the
conflict, so that participants would be incentivised to share data
honestly. BlockTorrent was also designed with a generalised
framework in mind so each of the components can be changed
to accomodate different requirements. For instance, the under-
lying storage could be an already established distributed file
storage system such as IPFS or Ethereum Swarm.

4. Implementation

In this section, we will explain the implementation and
evaluation of BlockTorrent. Section 4.1 will explain what
technologies we used to implement our test network. Section
5 will provide an overview of our results, highlighting our key
findings and lastly, Section 5.2 will provide security analysis
of BlockTorrent against some of the common network attacks.

4.1. Implementation

The implementation has three interacting components.
They are as follows:

Main Chain: BlockTorrent is implemented on Hyper-
ledger Fabric (HLF) version 2.31, which is one of IBM’s
enterprise level blockchains created for easy integration with
business applications. HLF is a private blockchain that relies
on a consortium to create a secure decentralised shared ledger.
The participants in this consortium network are identified by
predetermined certificate authorities, either agreed upon before
or organised separately by each participant. HLF uses peer
nodes to allow administrators and applications access to the
ledger by exposing a set of API’s for accessing certain parts
of the ledger. HLF has two key features that BlockTorrent
takes advantage of and were mentioned previously in Section
3.2. They are: (i) private data collections, and (ii) the transient
field. Private data collections are used to give organisations
the ability to store data within the HLF network but secure it
so that only that organisation can access it. BlockTorrent uses
these collections to store the key shares once a decryption key
is submitted to the network. The transient field allows users to
submit private information to the blockchain without allowing
validators to view this information. BlockTorrent uses the
transient field to shield the decryption key from eavesdropping
when it is submitted as part of the data storing mechanism.
The last key aspect of the implementation is the smart con-
tracts that were developed and deployed. We developed smart
contracts in Go v1.11.2. that accept and process transactions
from participants. As referenced in Section 3.2 there are two
smart contracts. The first implements SSS and is responsible

1. https://www.hyperledger.org/projects/fabric

108

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on May 11,2022 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

(a) Splitting Time (b) Distribution Time (c) Retrieval Time

Figure 4: Time taken to split distribute and retrieve files over the overlay network.

for splitting a key into different parts and storing them in
participants’ private data collections. An endorsement policy
was developed that allows transactions from one organisation
to store key shards in a distinct organisations private data
collection but not retrieve them. The second chaincode accepts
transactions that contain the metadata including the peers that
have stored a copy, hash digest and owner of the file the
chunk. A second smart contract was developed for the key
management process as described in Section 3.2.2.

Overlay Network: The overlay network was written in
Python 3.7. We made use of Python’s native networking to
simulate a P2P network as well as generate files to share. For
encryption and hashed sharding processes we used the SHA3-
256, SHA-384 and SHA-512 algorithms. Each peer is setup
to listen to two events. The first event is detecting new data in
the private database and the second is to listen for incoming
packets from other peers. Similar to a BitTorrent network, a
Distributed Hash Table is maintained for storing the address
and names of each peer so that they can easily be found.

Private Database: This component can be any data stor-
age solution that the private organisation deems necessary. The
only requirement for use within BlockTorrent is that the data
can be aggregated into files and that an admin node that can
access the data is also a part of the admin node consortium. For
our implementation, we assume each participant is managing
their own private database.

5. Evaluation

We have split the evaluation into a performance component
and a security analysis. The overlay and blockchain compo-
nents were tested independently.

5.1. Performance Evaluation

We tested the performance of the main chain using
Caliper2 on a Linux server with a Intel(R) Xeon(R) W-2135
CPU with 62GB of memory. In order to evaluate the system
performance for a realistic scenario, the test network included
four participants each deploying an endorsing peer, a chain-
code container and a regular peer. Each participant also has
a process that is simulating the sensor devices by generating
data files. There is also an ordering service running solo for
the test network.

2. https://www.hyperledger.org/projects/caliper

The overlay network was tested on an HP Pavilion-15-
cc134tx with 16GB of memory and an Intel i7 processor. The
time module in Python was used to calculate the time required
for splitting, distributing and retrieving files. We studied the
variation in these three metrics as a function of changing
the file size and number of chunks. For testing purposes, we
considered 10 files of sensor data being generated, split and
distributed by six peers in the network simultaneously. We
retrieve at least one file from each peer on the network each
round. We tested with different file sizes (5,10,15,25,50 MB)
of sensor data as well as a different number of chunks. A
test with a particular number of chunks (10, 20, 40, 50, 60,
80, 100, 120, 140, 160, 180, 200) and a particular file size
was carried out 10 times and averaged to minimise error. For
example, one round of testing includes a 5MB sensor data
split into 50 chunks and distributed among 6 peers to give
us the splitting time and distribution time. Lastly, 5 files are
retrieved on a particular peer to capture retrieval time. This
process was executed 10 times for each pair of file size and
number of chunks.

Fig. 4a shows the results for splitting time with changing
file sizes and number of chunks. For files smaller than 10MB
the splitting time remains almost constant. On the other hand
for larger file sizes (more than 10MB), the splitting time is
higher and decreases slightly for larger number of chunks
(110+). Splitting time scales with file size and not the number
of chunks.

Fig. 4b shows the results for distributing file chunks to the
peers. To evaluate the distribution time, we used an acknowl-
edgement signal to indicate the end of the distribution process.
Each peer sends an acknowledgement to the peer from which
it received a chunk. For each file size, the distribution time
increases with increase in number of chunks. With almost no
effect on the file size, although if the file size was to become
drastically large it would become an issue again. Hence, if we
want faster distribution in our network, a smaller number of
chunks should be selected.

Fig. 4c shows the regeneration time which is equal to
the difference between the time at which the retrieval of the
first chunk starts and the time at which the complete file is
regenerated and verified against the hash in the master table.
The regeneration time remains almost constant, with respect
to the number of chunks and increases with respect to file size.

For smaller file sizes the splitting time, distribution time
and retrieval time are similar, however, for larger file sizes the

109

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on May 11,2022 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

splitting and retrieval time values are significantly higher than
the distribution time. The file distribution was executed on a lo-
cal network which would have a lower latency on average than
a live network. The file sizes and number of chunks should
be determined based on the application needs. Applications
requiring faster distribution time can choose smaller number
of chunks to reduce the impact of distribution time.

For bench marking the blockchain layer we split it into two
key parts, storing and splitting the private key and querying
the splits. For storing we tested splitting the key up into
2,3,4 and 10 shards and then storing them in random par-
ticipants’ private data collections and recorded the throughput
and average latency for each transaction. The transactions were
simulated using Hyperledger Caliper. Fig. 5 shows latency
and throughput results for these tests. The system reaches
saturation around 35 tps and we see a small drop off to
around 30 tps between splitting the key into 2 shards and
10 shards. The latency increases with send rate as once the
system is at saturation, higher send rates just create larger
queues. The difference in throughput between splitting the key
into 2 or 10 shards is small, indicating that the secret sharing
implementation on-chain is a bottleneck on the system. This
can be resolved with having participants aggregate files before
encrypting and sharing them with BlockTorrent. This would
reduce the number of keys that need to be submitted and split
up on chain, alleviating some of the issues that come with
scaling this system up.

Fig. 6 shows the transaction throughout and latency for
querying shards of a private key. Note this is not the time taken
to recombine the shards into the original key as that can be
done off chain and will not affect the blockchain performance.
A query transaction will execute an access control process
on the submitter to make sure they are authorised and then
will read the shard from the private data collection. Similar
to the key storing bench mark, we tested querying 2,3,4
and 10 shards. The results show that querying shards is less
computationally expensive and does not reach saturation until
after 500 tps. This indicates that the system could handle a
large number of queries and would be adequate handling a
larger scale supply chain or similar system.

5.2. Security

Data provided by a participant could be privacy sensitive,
thus protecting data security is essential. Unlike centralised
servers, the data in a distributed framework is required to be
shared across multiple participants. Hence, common client-
server defences may not be appropriate.

The decryption keys being shared along with the encrypted
files and encrypted master table implies that the most critical
security risk is access to the keys. HLF allows for transient
field parameters, which allows us to pass the keys to the
blockchain without other peers seeing them. The keys are then
split up using SSS on-chain, giving no participant any control
over the process. Participants will decide in advance how many
shards each key will be split into and how many shards are
required to recreate the key. The chaincode can be updated if
the participants agree on new security requirements because
of changes to entities or components within the system.

Figure 5: Transaction throughput and latency of storing and
splitting the private key on the blockchain.

Figure 6: Transaction throughput and latency for querying a
specific number of shards from a particular private key.

As for accessing these key shards, an endorsement policy
can be used that requires a large proportion of participants to
agree on access to any shards. This minimises the chance of
collusion attacks as an adversary would need to compromise
a large number of participants. An adversary could launch a
sniffing attack to try and determine how much data a particular
participant is generating and potentially gain insights that
would allow them to manipulate supply chain processes in
their favour. To defend against this, BlockTorrent encrypts all
files and tables regarding file distribution and then passes the
key to the blockchain in a transient field. Network traffic can
still be monitored, but no information about the key is leaked.

BlockTorrent also uses an audit system to defend against
malicious participants. If a dispute is raised between two
participants, then an authority already established on the main
chain can act as a mediator using the main chain as a source of
truth. Any participant detected with contradicting evidence on
the main chain is penalised via a financial penalty or removed
from the network.

Table 2 summarises the identified attacks that could be
launched against BlockTorrent and how it defends against
them.

110

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on May 11,2022 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

TABLE 2: Identified security attacks and proposed countermeasures using BlockTorrent.

Attack Description Adverse Effects Possible Countermeasures

Data Spoofing [27] A malicious admin node could alter the
sensor data as it is being recorded and
stored in the private network. The admin
could then choose what to store in the
network, allowing a participant to falsify
information that would be used in a
trade or an audit.

Adversary can falsify the data.
A peer or authority requesting
data from this participant could
receive misleading information
that can be verified using Block-
Torrent.

BlockTorrent forces participants to share
encrypted data in near real time. A ma-
licious participant would need to know
in advance what to modify the data to
which can be exceedingly difficult to
accomplish consistently. If the adversary
was lying about information that is used
during trades then they would be found
out once a buyer received items that did
not match the main chain information.
Otherwise they will be discovered if an
audit is requested.

Sybil Attack [28] A malicious node pretends to be multi-
ple nodes on the network and trick other
nodes into sending it more chunks than
intended. The worst case is a single node
controlling all the chunks of a file. This
node then has control over the distribu-
tion of that file.

Adversary can gain access to ev-
ery chunk of a file.

The chunks are of an encrypted file so
the adversary would only get informa-
tion on the size of the file and chunks.
BlockTorrent also identifies each user on
entry to the network such that if a node
wanted to imitate a node from another
participant they would need to register
as a node under that participant.

DoS/DDoS Attack [29] Adversary floods the network with in-
valid transactions.

The network is slowed down to
a point that valid transactions
are rejected or dropped due to
throttling.

BlockTorrent identifies the participants
on entry, so every node sending files is
linked to a participant as explained in
Section 3. Any node found to be gener-
ating large amounts of invalid transac-
tions can be identified and have access
denied or revoked as a response.

Sniffing Attack [30] Adversary seeks to analyse network traf-
fic to obtain insights into participants’
data.

Adversary can gain insights into
other participant’s data, poten-
tially revealing company secrets.

As mentioned in Section 3.2, each file is
encrypted before being split and trans-
ferred, so only the amount of traffic will
be visible to anyone on the network, no
private information is leaked.

Collusion Attack [31] Adversaries can collude with one or
more nodes to reveal confidential infor-
mation.

If the adversaries can obtain the
decryption keys and the data file
chunks they would be able to
retrieve the files.

Adversaries need access to both the keys
and file chunks to execute a successful
collusion attack. Even if an adversary
gains access to the keys, they would
need to collude with a large number of
participants to request all chunks of a
file. BlockTorrent can increase the num-
ber of chunks to increase the difficulty
of this attack.

6. Challenges and Discussions

The major trade-off for BlockTorrent is between privacy
and security, in relation to key and file distribution. Both the
file and the key need to be distributed to avoid the issue of an
owner ’losing’ the information. BlockTorrent attempts to solve
this issue by exploring the gap in privacy and availability in
the context of integration of blockchain and IoT. IoT devices
can be equipped with state of the art sensors, capable of
capturing substantial amounts of private data. Therefore, a
discussion about the trade-off between what information is
considered private and what should be easily available is
necessary. BlockTorrent explores this trade-off through the key
distribution challenge. This issue occurs whenever a decision
about what secret should be kept by the owner of data to
ensure privacy. If the owner keeps the master table or the
decryption key a secret, then he can claim to have ’lost’ the
data and the files become unavailable even though they have
been distributed on BlockTorrent. However, if a secret sharing
algorithm is used, then the availability of the file is ensured.

This creates a security risk as peers can collaborate and create
the decryption key and the associated files.

Security is also a major consideration for BlockTorrent.
A naive design choice would be to store the raw data on the
main chain, but this would lead to potential information leaks.
BlockTorrent employs a different approach where raw data is
stored off-chain and only the transaction metadata is stored
on the main chain. A master table contains data for tracing
all the chunks of a file in the network. It can be used to
reconstruct a whole file, thereby revealing private information
of a company. Although everyone in the network can access
the master table, this information cannot be used without
possessing the decryption key.

BlockTorrent provides a mechanism where the level of
privacy can be dynamically changed based on the application
needs. For instance, a construction supply chain may have
lower privacy concerns than a specialised pharmaceutical sup-
ply chain. These supply chains will have different security reg-
ulations and access control requirements, which has inspired
us to keep the design of BlockTorrent generalised so that it

111

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on May 11,2022 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

can be integrated with any supply chain. The degree of privacy
present in BlockTorrent can be controlled on a technical level
by varying the complexity of encryption used. To increase
privacy, participants can agree to share less data. This can also
be determined at the abstract level where we design the role
of the main chain in the system, which can either be a storage
medium or a world state that keeps track of file locations. If
real-time access is not a concern, then storing whole encrypted
chunks on the main chain could be a solution. Paired with
competent key sharing mechanisms, this system ensures the
accessibility of the files.

7. Conclusion

We have proposed BlockTorrent as a novel privacy-
preserving data availability protocol that can be used with
any supply chain management data. Currently, solutions rely
on centralised storage mediums and participant compliance to
access data, leaving authorities without a guaranteed means for
accessing data. By distributing chunks of data among supply
chain participants, it is possible for honest participants to
share their private data securely. Having quick access to this
data allows for faster exchanges, reduces supply chain costs
and provides a more seamless process for data access. Our
results indicate that smaller number of chunks will improve
file distribution time without severely impacting the security of
the protocol. BlockTorrent creates an immutable digital history
for all transactions that occur on a supply chain, which can
be used as a single source of truth for determining faults.

References

[1] M. Asante, G. Epiphaniou, C. Maple, H. Al-Khateeb, M. Bottarelli,
and K. Z. Ghafoor, “Distributed ledger technologies in supply chain
security management: A comprehensive survey,” IEEE Transactions on
Engineering Management, 2021.

[2] S. Pal, T. Rabehaja, A. Hill, M. Hitchens, and V. Varadharajan, “On
the integration of blockchain to the internet of things for enabling
access right delegation,” IEEE Internet of Things Journal, vol. 7, no. 4,
pp. 2630–2639, 2019.

[3] S. Malik, S. S. Kanhere, and R. Jurdak, “ProductChain: Scalable
blockchain framework to support provenance in supply chains,” NCA
2018 - 2018 IEEE 17th International Symposium on Network Computing
and Applications, 2018.

[4] K. Korpela, J. Hallikas, and T. Dahlberg, “Digital Supply Chain Trans-
formation toward Blockchain Integration,” in Proceedings of the 50th
Hawaii International Conference on System Sciences (2017), Hawaii
International Conference on System Sciences, 2017.

[5] R. Monfared and S. Abeyratne, “Blockchain ready manufacturing supply
chain using distributed ledger,” International Journal of Research in
Engineering and Technology-IJRET, no. 09, pp. 1–10, 2016.

[6] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and M. H.
Rehmani, “Applications of Blockchains in the Internet of Things: A
Comprehensive Survey,” 2019.

[7] Microsoft, How Blockchain will transform the modern supply chain.
Microsoft White Paper, 2018.

[8] E. Elrom, Hyperledger White Paper. IBM Hyperledger, 2019.

[9] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The Bittorrent
P2P file-sharing system: Measurements and analysis,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 3640 LNCS,
pp. 205–216, 2005.

[10] Swarm Team, “SWARM - Storage and Communication Infrastructure
for a Self-Sovereign Digital Society,” pp. 1–13, 2021.

[11] I. Baumgart and S. Mies, “IPFS Whitepaper,” Proceedings of the In-
ternational Conference on Parallel and Distributed Systems - ICPADS,
vol. 2, no. Draft 3, 2007.

[12] Bittorrent Foundation, “BitTorrent (BTT) White Paper,” BitTorrent
Official Website, no. February, pp. 1–21, 2019.

[13] B. GmbH, “BigChainDB,” 2020.

[14] G. Ayoade et al., “Decentralized iot data management using blockchain
and trusted execution environment,” in 2018 IEEE International Confer-
ence on Information Reuse and Integration (IRI), pp. 15–22, 07 2018.

[15] L. Zhu et al., “Controllable and trustworthy blockchain-based cloud data
management,” Future Generation Computer Systems, vol. 91, 09 2018.

[16] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, “Towards
blockchain-based auditable storage and sharing of iot data,” in Proceed-
ings of the 2017 on Cloud Computing Security Workshop, CCSW ’17,
(New York, NY, USA), p. 45–50, Association for Computing Machinery,
2017.

[17] H. Huang, J. Lin, B. Zheng, Z. Zheng, and J. Bian, “When Blockchain
Meets Distributed File Systems: An Overview, Challenges, and Open
Issues,” IEEE Access, vol. PP, p. 1, 2020.

[18] H. T. Vo et al., “Research directions in blockchain data management
and analytics,” in EDBT, 2018.

[19] R. K. Raman and L. R. Varshney, “Distributed storage meets secret
sharing on the blockchain,” 2018 Information Theory and Applications
Workshop, ITA 2018, 10 2018.

[20] M. Fukumitsu, S. Hasegawa, J. Iwazaki, M. Sakai, and D. Takahashi,
“A proposal of a secure P2P-type storage scheme by using the secret
sharing and the blockchain,” Proceedings - International Conference on
Advanced Information Networking and Applications, AINA, pp. 803–
810, 5 2017.

[21] N. Venkateswaran and S. Changder, “Simplified data partitioning in
a consistent hashing based sharding implementation,” in IEEE Region
10 Annual International Conference, Proceedings/TENCON, vol. 2017-
December, pp. 895–900, Institute of Electrical and Electronics Engineers
Inc., 12 2017.

[22] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The EigenTrust
algorithm for reputation management in P2P networks,” in Proceedings
of the 12th International Conference on World Wide Web, WWW 2003,
pp. 640–651, 2003.

[23] A. Shamir, “How to Share a Secret,” Communications of the ACM,
vol. 22, pp. 612–613, 11 1979.

[24] D. Benarroch, M. Campanelli, D. Fiore, K. Gurkan, and D. Kolone-
los, “Zero-Knowledge Proofs for Set Membership: Efficient, Succinct,
Modular,” IACR Cryptology ePrint Archive, no. 2019/1255, pp. 1–67,
2019.

[25] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” Proceedings - IEEE Symposium on Security and Privacy,
pp. 459–474, 2014.

[26] IBM, “Private Data in Hyperledger Fabric,” 2020.

[27] A. Hadid et al., “Biometrics systems under spoofing attack: An evalu-
ation methodology and lessons learned,” IEEE Signal Processing Mag-
azine, vol. 32, pp. 20–30, Sep. 2015.

[28] J. R. Douceur, “The sybil attack,” Springer Berlin Heidelberg, pp. 251–
260, 2002.

[29] C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense mecha-
nisms: classification and state-of-the-art,” Computer Networks, vol. 44,
no. 5, pp. 643 – 666, 2004.

[30] P. Anu and S. Vimala, “A survey on sniffing attacks on computer
networks,” in 2017 International Conference on Intelligent Computing
and Control (I2C2), pp. 1–5, June 2017.

[31] M. Z. A. Bhuiyan and J. Wu, “Collusion attack detection in networked
systems,” in 2016 IEEE 14th Intl Conf on Dependable, Autonomic and
Secure Computing, pp. 286–293, Aug 2016.

112

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on May 11,2022 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

